TRIQ implementation

Overview

TRIQ Implementation

TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment.

Installation

  1. Clone this repository.
  2. Install required Python packages. The code is developed by PyCharm in Python 3.7. The requirements.txt document is generated by PyCharm, and the code should also be run in latest versions of the packages.

Training a model

An example of training TRIQ can be seen in train/train_triq.py. Argparser should be used, but the authors prefer to use dictionary with parameters being defined. It is easy to convert to take arguments. In principle, the following parameters can be defined:

args = {}
args['multi_gpu'] = 0 # gpu setting, set to 1 for using multiple GPUs
args['gpu'] = 0  # If having multiple GPUs, specify which GPU to use

args['result_folder'] = r'..\databases\experiments' # Define result path
args['n_quality_levels'] = 5  # Choose between 1 (MOS prediction) and 5 (distribution prediction)

args['transformer_params'] = [2, 32, 8, 64]

args['train_folders'] =  # Define folders containing training images
    [
    r'..\databases\train\koniq_normal',
    r'..\databases\train\koniq_small',
    r'..\databases\train\live'
    ]
args['val_folders'] =  # Define folders containing testing images
    [
    r'..\databases\val\koniq_normal',
    r'..\databases\val\koniq_small',
    r'..\databases\val\live'
    ]
args['koniq_mos_file'] = r'..\databases\koniq10k_images_scores.csv'  # MOS (distribution of scores) file for KonIQ database
args['live_mos_file'] = r'..\databases\live_mos.csv'   # MOS (standard distribution of scores) file for LIVE-wild database

args['backbone'] = 'resnet50' # Choose from ['resnet50', 'vgg16']
args['weights'] = r'...\pretrained_weights\resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'  # Define the path of ImageNet pretrained weights
args['initial_epoch'] = 0  # Define initial epoch for use in fine-tune

args['lr_base'] = 1e-4 / 2  # Define the back learning rate in warmup and rate decay approach
args['lr_schedule'] = True  # Choose between True and False, indicating if learning rate schedule should be used or not
args['batch_size'] = 32  # Batch size, should choose to fit in the GPU memory
args['epochs'] = 120  # Maximal epoch number, can set early stop in the callback or not

args['image_aug'] = True # Choose between True and False, indicating if image augmentation should be used or not

Predict image quality using the trained model

After TRIQ has been trained, and the weights have been stored in h5 file, it can be used to predict image quality with arbitrary sizes,

    args = {}
    args['n_quality_levels'] = 5
    args['backbone'] = 'resnet50'
    args['weights'] = r'..\\TRIQ.h5'
    model = create_triq_model(n_quality_levels=args['n_quality_levels'],
                              backbone=args['backbone'],])
    model.load_weights(args['weights'])

And then use ModelEvaluation to predict quality of image set.

In the "examples" folder, an example script examples\image_quality_prediction.py is provided to use the trained weights to predict quality of example images. In the "train" folder, an example script train\validation.py is provided to use the trained weights to predict quality of images in folders.

A potential issue is image shape mismatch. For example, if an image is too large, then line 146 in transformer_iqa.py should be changed to increase the pooling size. For example, it can be changed to self.pooling_small = MaxPool2D(pool_size=(4, 4)) or even larger.

Prepare datasets for model training

This work uses two publicly available databases: KonIQ-10k KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment by V. Hosu, H. Lin, T. Sziranyi, and D. Saupe; and LIVE-wild Massive online crowdsourced study of subjective and objective picture quality by D. Ghadiyaram, and A.C. Bovik

  1. The two databases were merged, and then split to training and testing sets. Please see README in databases for details.

  2. Make MOS files (note: do NOT include head line):

    For database with score distribution available, the MOS file is like this (koniq format):

        image path, voter number of quality scale 1, voter number of quality scale 2, voter number of quality scale 3, voter number of quality scale 4, voter number of quality scale 5, MOS or Z-score
        10004473376.jpg,0,0,25,73,7,3.828571429
        10007357496.jpg,0,3,45,47,1,3.479166667
        10007903636.jpg,1,0,20,73,2,3.78125
        10009096245.jpg,0,0,21,75,13,3.926605505
    

    For database with standard deviation available, the MOS file is like this (live format):

        image path, standard deviation, MOS or Z-score
        t1.bmp,18.3762,63.9634
        t2.bmp,13.6514,25.3353
        t3.bmp,18.9246,48.9366
        t4.bmp,18.2414,35.8863
    

    The format of MOS file ('koniq' or 'live') and the format of MOS or Z-score ('mos' or 'z_score') should also be specified in misc/imageset_handler/get_image_scores.

  3. In the train script in train/train_triq.py the folders containing training and testing images are provided.

  4. Pretrained ImageNet weights can be downloaded (see README in.\pretrained_weights) and pointed to in the train script.

Trained TRIQ weights

TRIQ has been trained on KonIQ-10k and LIVE-wild databases, and the weights file can be downloaded here.

State-of-the-art models

Other three models are also included in the work. The original implementations of metrics are employed, and they can be found below.

Koncept512 KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment

SGDNet SGDNet: An end-to-end saliency-guided deep neural network for no-reference image quality assessment

CaHDC End-to-end blind image quality prediction with cascaded deep neural network

Comparison results

We have conducted several experiments to evaluate the performance of TRIQ, please see results.pdf for detailed results.

Error report

In case errors/exceptions are encountered, please first check all the paths. After fixing the path isse, please report any errors in Issues.

FAQ

  • To be added

ViT (Vision Transformer) for IQA

This work is heavily inspired by ViT An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. The module vit_iqa contains implementation of ViT for IQA, and mainly followed the implementation of ViT-PyTorch. Pretrained ViT weights can be downloaded here.

Owner
Junyong You
Junyong You
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaƫl Defferrard We

haguettaz 12 Dec 10, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022