WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

Related tags

Deep LearningWPPNets
Overview

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

This code belongs to the paper [1] available at https://arxiv.org/abs/2201.08157. Please cite the paper, if you use this code.

The paper [1] is The repository contains an implementation of WPPNets as introduced in [1]. It contains scripts for reproducing the numerical example Texture superresolution in Section 5.2.

Moreover, the file wgenpatex.py is adapted from [2] available at https://github.com/johertrich/Wasserstein_Patch_Prior and is adapted from [3]. Furthermore, the folder model is adapted from [5] available at https://github.com/hellloxiaotian/ACNet.

The folders test_img and training_img contain parts of the textures from [4].

For questions and bug reports, please contact Fabian Altekrueger (fabian.altekrueger(at)hu-berlin.de).

CONTENTS

  1. REQUIREMENTS
  2. USAGE AND EXAMPLES
  3. REFERENCES

1. REQUIREMENTS

The code requires several Python packages. We tested the code with Python 3.9.7 and the following package versions:

  • pytorch 1.10.0
  • matplotlib 3.4.3
  • numpy 1.21.2
  • pykeops 1.5

Usually the code is also compatible with some other versions of the corresponding Python packages.

2. USAGE AND EXAMPLES

You can start the training of the WPPNet by calling the scripts. If you want to load the existing network, please set retrain to False. Checkpoints are saved automatically during training such that the progress of the reconstructions is observable. Feel free to vary the parameters and see what happens.

TEXTURE GRASS

The script run_grass.py is the implementation of the superresolution example in [1, Section 5.2] for the Kylberg Texture [4] grass which is available at https://kylberg.org/kylberg-texture-dataset-v-1-0. The high-resolution ground truth and the reference image are different 600×600 sections cropped from the original texture images. Similarly, the low-resolution training data is generated by cropping 100×100 sections from the texture images, artificially downsampling it by a predefined forward operator f and adding Gaussian noise. For more details on the downsampling process, see [1, Section 5.2].

TEXTURE FLOOR

The script run_floor.py is the implementation of the superresolution example in [1, Section 5.2] for the Kylberg Texture [4] Floor which is available at https://kylberg.org/kylberg-texture-dataset-v-1-0. The high-resolution ground truth and the reference image are different 600×600 sections cropped from the original texture images. Similarly, the low-resolution training data is generated by cropping 100×100 sections from the texture images, artificially downsampling it by a predefined forward operator f and adding Gaussian noise. For more details on the downsampling process, see [1, Section 5.2].

3. REFERENCES

[1] F. Altekrueger, J. Hertrich.
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution.
ArXiv Preprint#2201.08157

[2] J. Hertrich, A. Houdard and C. Redenbach.
Wasserstein Patch Prior for Image Superresolution.
ArXiv Preprint#2109.12880

[3] A. Houdard, A. Leclaire, N. Papadakis and J. Rabin.
Wasserstein Generative Models for Patch-based Texture Synthesis.
ArXiv Preprint#2007.03408

[4] G. Kylberg.
The Kylberg texture dataset v. 1.0.
Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, 2011

[5] C. Tian, Y. Xu, W. Zuo, C.-W. Lin, and D. Zhang.
Asymmetric CNN for image superresolution.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021.

Owner
Fabian Altekrueger
Fabian Altekrueger
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021