Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Related tags

Deep LearningASAPNet
Overview

Image Translation with ASAPNets

Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Webpage | Paper | Video

Installation

install requirements:

pip install -r requirements.txt

Code Structure

The code is heavily based on the official implementation of SPADE, and therefore has the saome structure:

  • train.py, test.py: the entry point for training and testing.
  • trainers/pix2pix_trainer.py: harnesses and reports the progress of training.
  • models/pix2pix_model.py: creates the networks, and compute the losses.
  • models/networks/: defines the architecture of all models.
  • options/: creates option lists using argparse package. More individuals are dynamically added in other files as well. Please see the section below.
  • data/: defines the class for loading images and label maps.

The ASAPNets generator is implementaed in:

  • models/networks/generator: defines the architecture of the ASAPNets generator.

Dataset Preparation

facades

run:

cd data 
bash facadesHR_download_and_extract.sh

This will extract the facades full resolution images into datasets/facadesHR.

cityscapes

download the dataset into datasets/cityscapes and arrange in folders: train_images, train_labels, val_images, val_labels

Generating Images Using Pretrained Models

Pretraned models can be downloaded from here. Save the models under the checkpoints/ folder. Images can be generated using the command:

# Facades 512
bash test_facades512.sh

# Facades 1024
bash test_facades512.sh

# Cityscapes
bash test_cityscapes.sh

The outputs images will appear at the./results/ folder.

Training New Models

New models can be trained with the following commands. Prepare dataset in the ./datasets/ folder. Arrange in folders: train_images, train_labels, val_images, val_labels . For custom datasets, the easiest way is to use ./data/custom_dataset.py by specifying the option --dataset_mode custom, along with --label_dir [path_to_labels] --image_dir [path_to_images]. You also need to specify options such as --label_nc for the number of label classes in the dataset, --contain_dontcare_label to specify whether it has an unknown label, or --no_instance to denote the dataset doesn't have instance maps.

Run:

python train.py --name [experiment_name] --dataset_mode custom --label_dir [path_to_labels] -- image_dir [path_to_images] --label_nc [num_labels]

There are many additional options you can specify, please explore the ./options files. To specify the number of GPUs to utilize, use --gpu_ids.

Testing

Testing is similar to testing pretrained models.

python test.py --name [name_of_experiment] --dataset_mode [dataset_mode] --dataroot [path_to_dataset]

you can load the parameters used from training by specifying --load_from_opt_file.

Acknowledgments

This code is heavily based on the official implementation of SPADE. We thank the authors for sharing their code publicly!

License

Attribution-NonCommercial-ShareAlike 4.0 International (see file).

Citation

@inproceedings{RottShaham2020ASAP,
  title={Spatially-Adaptive Pixelwise Networks for Fast Image Translation},
  author={Rott Shaham, Tamar and Gharbi, Michael and Zhang, Richard and Shechtman, Eli and Michaeli, Tomer},
  booktitle={Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}
Owner
Tamar Rott Shaham
Tamar Rott Shaham
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022