Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Related tags

Deep LearningMGCNet
Overview

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020)

This is an official python implementation of MGCNet. This is the pre-print version https://arxiv.org/abs/2007.12494.

Result

  1. video

  1. image image

  2. Full video can be seen in YouTube

Running code

1. Code + Requirement + thirdlib

We run the code with python3.7, tensorflow 1.13

git clone --recursive https://github.com/jiaxiangshang/MGCNet.git
cd MGCNet
(sudo) pip install -r requirement.txt

(1) For render loss(reconstruction loss), we use the differential renderer named tf_mesh_render. I find many issue happens here, so let's make this more clear. The tf_mesh_render does not return triangle id for each pixel after rasterise, we do this by our self and add these changes as submodule to mgcnet.

(2) Then how to compile tf_mesh_render, my setting is bazel==10.1, gcc==5.*, the compile command is

bazel build ...

The gcc/g++ version higher than 5.* will bring problems, a good solution is virtual environment with a gcc maybe 5.5. If the The gcc/g++ version is 4.* that you can try to change the compile cmd in BUILD file, about the flag -D_GLIBCXX_USE_CXX11_ABI=0 or -D_GLIBCXX_USE_CXX11_ABI=1 for 4.* or 5.*

2.Model

  1. 3dmm model + network weight

    We include BFM09/BFM09 expression, BFM09 face region from DengYu, BFM09 uv from 3DMMasSTN into a whole 3dmm model. https://drive.google.com/file/d/1RkTgcSGNs2VglHriDnyr6ZS5pbnZrUnV/view?usp=sharing Extract this file to /MGCNet/model

  2. pretain

    This include the pretrail model for the Resnet50 and vgg pretrain model for Facenet. Extract this file to /MGCNet/pretain

3.Data

  1. data demo: https://drive.google.com/file/d/1Du3iRO0GNncZsbK4K5sboSeCUv0-SnRV/view?usp=sharing

    Extract this file to /MGCNet/data, we can not provide all datas, as it is too large and the license of MPIE dataset not allow me to do this.

  2. data: landmark ground truth

    The detection method from https://github.com/1adrianb/2D-and-3D-face-alignment, and we use the SFD face detector

  3. data: skin probability

    I get this part code from Yu DENG([email protected]), maybe you can ask help from him.

4.Testing

  1. test_image.py This is used to inference a single unprocessed image(cmd in file). This file can also render the images(geometry, texture, shading,multi-pose), like above or in our paper(read code), which makes visualization and comparison more convenient.

  2. preprocess All the preprocess has been included in 'test_image.py', we show the outline here. (1) face detection and face alignment are package in ./tools/preprocess/detect_landmark,py. (2) face alignment by affine transformation to warp the unprocess image. Test all the images in a folder can follow this preprocess.

5.Training

  1. train_unsupervise.py

Useful tools(keep updating)

  1. face alignment tools
  2. 3D face render tools.
  3. Camera augment for rendering.

Citation

If you use this code, please consider citing:

@article{shang2020self,
  title={Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency},
  author={Shang, Jiaxiang and Shen, Tianwei and Li, Shiwei and Zhou, Lei and Zhen, Mingmin and Fang, Tian and Quan, Long},
  journal={arXiv preprint arXiv:2007.12494},
  year={2020}
}

Contacts

Please contact [email protected] or open an issue for any questions or suggestions.

Acknowledgements

Thanks the help from recent 3D face reconstruction papers Deep3DFaceReconstruction, 3DMMasSTN, PRNet, RingNet, 3DDFA and single depth estimation work DeepMatchVO. I would like to thank Tewari to provide the compared result.

Owner
I am a PH.D candidate in HKUST, I focus on 3D face reconstruction. MGCNet can handle large/extreme face pose cases, enjoy it.
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros

Nikos Kolotouros 209 Dec 13, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

139 Dec 29, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022