Styled Augmented Translation

Related tags

Deep LearningSAT
Overview

SAT

Style Augmented Translation

PWC

Introduction

By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 different domains of English-Vietnamese Translation.

English to Vietnamese Translation (BLEU score)

drawing

Vietnamese to English Translation (BLEU score)

drawing

Get data and model at Google Cloud Storage

Check out our demo web app

Visit our blog post for more details.


Using the code

This code is build on top of vietai/dab:

To prepare for training, generate tfrecords from raw text files:

python t2t_datagen.py \
--data_dir=$path_to_folder_contains_vocab_file \
--tmp_dir=$path_to_folder_that_contains_training_data \
--problem=$problem

To train a Transformer model on the generated tfrecords

python t2t_trainer.py \
--data_dir=$path_to_folder_contains_vocab_file_and_tf_records \
--problem=$problem \
--hparams_set=$hparams_set \
--model=transformer \
--output_dir=$path_to_folder_to_save_checkpoints

To run inference on the trained model:

python t2t_decoder.py \
--data_dir=$path_to_folde_contains_vocab_file_and_tf_records \
--problem=$problem \
--hparams_set=$hparams_set \
--model=transformer \
--output_dir=$path_to_folder_contains_checkpoints

In this colab, we demonstrated how to run these three phases in the context of hosting data/model on Google Cloud Storage.


Dataset

Our data contains roughly 3.3 million pairs of texts. After augmentation, the data is of size 26.7 million pairs of texts. A more detail breakdown of our data is shown in the table below.

Pure Augmented
Fictional Books 333,189 2,516,787
Legal Document 1,150,266 3,450,801
Medical Publication 5,861 27,588
Movies Subtitles 250,000 3,698,046
Software 79,912 239,745
TED Talk 352,652 4,983,294
Wikipedia 645,326 1,935,981
News 18,449 139,341
Religious texts 124,389 1,182,726
Educational content 397,008 8,475,342
No tag 5,517 66,299
Total 3,362,569 26,715,950

Data sources is described in more details here.

Comments
  • Data leakage issue in evaluation?

    Data leakage issue in evaluation?

    Hi team @lmthang @thtrieu @heraclex12 @hqphat @KienHuynh

    The obtained results of a Transformer-based model on the PhoMT test set surprised me. My first thought was that as VietAI and PhoMT datasets have several overlapping domains (e.g. Wikihow, TED talks, Opensubtitles, news..): whether there might be a potential data leakage issue in your evaluation (e.g. PhoMT English-Vietnamese test pairs appear in the VietAI training set)?

    In particular, we find that 6294/19151 PhoMT English-Vietnamese test pairs appear in the VietAI training set (v2). When evaluating your model on the PhoMT test set, did you guys retrain the model on a VietAI training set variant that does not contain PhoMT English-Vietnamese test pairs?

    Cheers, Dat.

    opened by datquocnguyen 3
  • Demo website is not working

    Demo website is not working

    Hi, seems like the easiest to reach out here but https://demo.vietai.org/ is down, looks like the page tried to serve a 404 error page.

    Connection failed with status 404, and response "<!DOCTYPE html> <html lang=en> <meta charset=utf-8> <meta name=viewport content="initial-scale=1, minimum-scale=1, width=device-width"> <title>Error 404 (Not Found)!!1</title> <style> *{margin:0;padding:0}html,code{font:15px/22px arial,sans-serif}html{background:#fff;color:#222;padding:15px}body{margin:7% auto 0;max-width:390px;min-height:180px;padding:30px 0 15px}* > body{background:url(//www.google.com/images/errors/robot.png) 100% 5px no-repeat;padding-right:205px}p{margin:11px 0 22px;overflow:hidden}ins{color:#777;text-decoration:none}a img{border:0}@media screen and (max-width:772px){body{background:none;margin-top:0;max-width:none;padding-right:0}}#logo{background:url(//www.google.com/images/branding/googlelogo/1x/googlelogo_color_150x54dp.png) no-repeat;margin-left:-5px}@media only screen and (min-resolution:192dpi){#logo{background:url(//www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png) no-repeat 0% 0%/100% 100%;-moz-border-image:url(//www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png) 0}}@media only screen and (-webkit-min-device-pixel-ratio:2){#logo{background:url(//www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png) no-repeat;-webkit-background-size:100% 100%}}#logo{display:inline-block;height:54px;width:150px} </style> <a href=//www.google.com/><span id=logo aria-label=Google></span></a> <p><b>404.</b> <ins>That’s an error.</ins> <p>The requested URL <code>/healthz</code> was not found on this server. <ins>That’s all we know.</ins> ".
    
    opened by VietThan 1
  • Got RuntimeError when run on Google Colab

    Got RuntimeError when run on Google Colab

    I ran the Readme.md samples on Google Colab with GPU and got this Error "RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cpu and cuda:0! (when checking argument for argument index in method wrapper__index_select)".

    Error code: outputs = model.generate(tokenizer(inputs, return_tensors="pt", padding=True).input_ids.to('cuda'), max_length=512)

    opened by kietbg0079 0
  • Got error 'AssertionError: Torch not compiled with CUDA enabled' on Macbook M1 pro

    Got error 'AssertionError: Torch not compiled with CUDA enabled' on Macbook M1 pro

    I have tried the example on my Macbook M1 pro but got this error: =>outputs = model.generate(tokenizer(inputs, return_tensors="pt", padding=True).input_ids.to('cuda'), max_length=512) raise AssertionError("Torch not compiled with CUDA enabled") AssertionError: Torch not compiled with CUDA enabled

    Please help!

    opened by htnha 4
  • Question about loading model

    Question about loading model

    I have a question about loading model. I have trained a Russian-to-Vietnamese model base on your code and tensor2tensor. Every time I want to predict a new sentence, it always load the model again, even before that I have already predicted another sentence. I want to ask that if there is a way not to have reload the model when predict a new sentence. Thank you very much

    opened by hieunguyenquoc 1
  • I have a issue about running decoder

    I have a issue about running decoder

    Data loss: Unable to open table file /content/drive/MyDrive/SAT/checkpoint: Failed precondition: /content/drive/MyDrive/SAT/checkpoint; Is a directory: perhaps your file is in a different file format and you need to use a different restore operator?

    I used a pretrain model : model.augmented.envi.ckpt-1415000.data-00000-of-00001, model.augmented.envi.ckpt-1415000.index, model.augmented.envi.ckpt-1415000.meta. All 3 file are put in checkpoint

    Could somebody help me with this issue ?

    opened by hieunguyenquoc 6
Releases(v1.0)
  • v1.0(Oct 2, 2021)

    First version.

    Trained on 3.3M training data points. Transformer with 9-layer encoder and 9-layer decoder. Tested on a multi-domain dataset, outperforming Google Translate. Experiments with style-tagging and data appending.

    Source code(tar.gz)
    Source code(zip)
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022