HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

Related tags

Deep Learninghalo
Overview

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

Oral Presentation, 3DV 2021

Korrawe Karunratanakul, Adrian Spurr, Zicong Fan, Otmar Hilliges, Siyu Tang
ETH Zurich

halo_teaser

report report

Video: Youtube

Abstract

We present Hand ArticuLated Occupancy (HALO), a novel representation of articulated hands that bridges the advantages of 3D keypoints and neural implicit surfaces and can be used in end-to-end trainable architectures. Unlike existing statistical parametric hand models (e.g.~MANO), HALO directly leverages the 3D joint skeleton as input and produces a neural occupancy volume representing the posed hand surface. The key benefits of HALO are (1) it is driven by 3D keypoints, which have benefits in terms of accuracy and are easier to learn for neural networks than the latent hand-model parameters; (2) it provides a differentiable volumetric occupancy representation of the posed hand; (3) it can be trained end-to-end, allowing the formulation of losses on the hand surface that benefit the learning of 3D keypoints. We demonstrate the applicability of HALO to the task of conditional generation of hands that grasp 3D objects. The differentiable nature of HALO is shown to improve the quality of the synthesized hands both in terms of physical plausibility and user preference.

Updates

  • December 1, 2021: Initial release for version 0.01 with demo.

Running the code

Dependencies

The easiest way to run the code is to use conda. The code is tested on Ubuntu 18.04.

Implicit surface from keypoints

halo_hand To try a demo which produces an implicit hand surface from the input keypoints, run:

cd halo
python demo_kps_to_hand.py

The demo will run the marching cubes algorithm and render each image in the animation above sequentially. The output images are in the output folder. The provided sample sequence are interpolations beetween 17 randomly sampled poses from the unseen HO3D dataset .

Dataset

  • The HALO-base model is trained using Youtube3D hand dataset. We only use the hand mesh ground truth without the images and videos. We provide the preprocessed data in the evaluation section.
  • The HALO-VAE model is trained and test on the GRAB dataset

Evaluation

HALO base model (implicit hand model)

To generate the mesh given the 3D keypoints and precomputed transformation matrices, run:

cd halo_base
python generate.py CONFIG_FILE.yaml

To evaluate the hand surface, run:

python eval_meshes.py

We provide the preprocessed test set of the Youtube3D here. In addition, you can also find the produced meshes from our keypoint model on the same test set here.

HALO-VAE

To generate grasps given 3D object mesh, run:

python generate.py HALO_VAE_CONFIG_FILE.ymal --test_data DATA_PATH --inference

The evaluation code for contact/interpenetration and cluster analysis can be found in halo/evaluate.py and halo/evaluate_cluster.py accordningly. The intersection test demo is in halo/utils/interscetion.py

Training

HALO base model (implicit hand model)

Data Preprocessing

Each data point consists of 3D keypoints, transformation matrices, and a hand surface. To speed up the training, all transformation matrices are precomputed, either by out Canonicalization Layer or from the MANO. Please check halo/halo_base/prepare_data_from_mano_param_keypoints.py for details. We use the surface point sampling and occupancy computation method from the Occupancy Networks

Run

To train HALO base model (implicit functions), run:

cd halo_base
python train.py

HALO-VAE

To train HALO-VAE, run:

cd halo
python train.py

HALO_VAE requires a HALO base model trained using the transformation matrices from the Canonicalization Layer. The weights of the base model are not updated during the VAE training.

BibTex

@inproceedings{karunratanakul2021halo,
  title={A Skeleton-Driven Neural Occupancy Representation for Articulated Hands},
  author={Karunratanakul, Korrawe and, Spurr, Adrian and Fan, Zicong and Hilliges, Otmar and Tang, Siyu},
  booktitle={International Conference on 3D Vision (3DV)},
  year={2021}
}

References

Some code in our repo uses snippets of the following repo:

Please consider citing them if you found the code useful.

Acknowledgement

We sincerely acknowledge Shaofei Wang and Marko Mihajlovic for the insightful discussionsand helps with the baselines.

Owner
Korrawe Karunratanakul
Korrawe Karunratanakul
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022