Deep Learning for Computer Vision final project

Overview

Deep Learning for Computer Vision final project

Team: DLCV1

Member & Contribution:

  • 林彥廷 (R06943184): 主程式撰寫、模型訓練 (50%)
  • 王擎天 (R06945055): 副程式撰寫、模型訓練、海報設計 (50%)

Overview:

This project contains code to predict image's type from different domain using moment matching.

Description:

Folders:

  • script: folder contains scripts
  • src: folder contains source code
  • model: folder contains saved models which automatically download from network

Files:

  • script/get_dataset.sh: script which downloads training and testing dataset
  • script/download_from_gdrive.sh: script which downloads googledrive data
  • script/parse_data.sh: script which loads training dataset and converts to torch dataset
  • script/predict.sh: script which predicts images
  • script/evaluate.sh: script which evaluates the model
  • script/predict_for_verify.sh script which generates mini-batch average validation accuracy and loss plot
  • src/models/classifier.py: classifier model
  • src/models/loss.py: loss function
  • src/models/pretrained.py: pretrained model
  • src/models/model.py: Model and function for prediction and evaluation
  • src/parse_data.py: load data in folder and convert them to torch dataset
  • src/predict.py: prediction main function
  • src/evaluate.py: evaluation main function
  • src/train.py: training function
  • src/utils.py: code for parsing and saving
  • src/util/dataset.py: customized dataloader
  • src/util/visual.py: code for visualization
  • src/create_path_csv.py:main function to create image path csv file for image folder

Dataset:

Download training and testing dataset to folder named "dataset_public":

bash ./script/get_dataset.sh

WARNING:

You MUST use src/create_path_csv.py to create image-path csv file for image folder which hasn't contain image-path csv file, the usage will teach you how to use it!!!

Usage:

Create image-path csv file for image folder:

User can use this script to create image-path csv file

python3 src/create_path_csv.py $1
  • $1 is the folder containing the images

Example: (path: /home/final-dlcv1)

python3 src/create_path_csv.py dataset_public/test

The result will look like following text: image_name,label test/018764.jpg,-1 test/034458.jpg,-1 test/050001.jpg,-1 test/027193.jpg,-1 test/002637.jpg,-1 test/017265.jpg,-1 test/048396.jpg,-1 test/013178.jpg,-1 test/036777.jpg,-1 ......

Predict labels of images:

User can use this script to predict labels of images

bash ./script/predict.sh $1 $2 $3 $4 $5
  • $1 is the domain of images (Option: infograph, quickdraw, real, sketch)
  • $2 is the folder containing the images
  • $3 is the csv file contains image paths
  • $4 is the folder to saved the result file
  • $5 is the batch size

Example 1: Predict images from real domain (path: /home/final-dlcv1)

bash script/predict.sh real dataset_public dataset_public/test/image_path.csv predict 256

Example 2: Predict images from sketch domain (path: /home/final-dlcv1)

bash script/predict.sh sketch dataset_public dataset_public/sketch/sketch_test.csv predict 256

Example 3: Predict images from infograph domain (path: /home/final-dlcv1)

bash script/predict.sh infograph dataset_public dataset_public/infograph/infograph_test.csv predict 256

Example 4: Predict images from quickdraw domain (path: /home/final-dlcv1)

bash script/predict.sh quickdraw dataset_public dataset_public/quickdraw/quickdraw_test.csv predict 256

Evaluate the result file:

User can use this script to evaluate the reuslt file with answer file, it will print result on the screen

bash ./script/evaluate.sh $1 $2
  • $1 is the predicted file csv
  • $2 is the answer file csv

Example (path:/home/final-dlcv1)

bash ./script/evaluate.sh predict/real_predict.csv test/test_answer.csv

Reference

Owner
grassking100
A researcher study in bioinformatics and deep learning. To see other repositories: https://bitbucket.org/grassking100/?sort=-updated_on&privacy=public.
grassking100
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023