Principled Detection of Out-of-Distribution Examples in Neural Networks

Overview

ODIN: Out-of-Distribution Detector for Neural Networks

This is a PyTorch implementation for detecting out-of-distribution examples in neural networks. The method is described in the paper Principled Detection of Out-of-Distribution Examples in Neural Networks by S. Liang, Yixuan Li and R. Srikant. The method reduces the false positive rate from the baseline 34.7% to 4.3% on the DenseNet (applied to CIFAR-10) when the true positive rate is 95%.

Experimental Results

We used two neural network architectures, DenseNet-BC and Wide ResNet. The PyTorch implementation of DenseNet-BC is provided by Andreas Veit and Brandon Amos. The PyTorch implementation of Wide ResNet is provided by Sergey Zagoruyko. The experimental results are shown as follows. The definition of each metric can be found in the paper. performance

Pre-trained Models

We provide four pre-trained neural networks: (1) two DenseNet-BC networks trained on CIFAR-10 and CIFAR-100 respectively; (2) two Wide ResNet networks trained on CIFAR-10 and CIFAR-100 respectively. The test error rates are given by:

Architecture CIFAR-10 CIFAR-100
DenseNet-BC 4.81 22.37
Wide ResNet 3.71 19.86

Running the code

Dependencies

  • CUDA 8.0

  • PyTorch

  • Anaconda2 or 3

  • At least three GPU

    Note: Reproducing results of DenseNet-BC only requires one GPU, but reproducing results of Wide ResNet requires three GPUs. Single GPU version for Wide ResNet will be released soon in the future.

Downloading Out-of-Distribtion Datasets

We provide download links of five out-of-distributin datasets:

Here is an example code of downloading Tiny-ImageNet (crop) dataset. In the root directory, run

mkdir data
cd data
wget https://www.dropbox.com/s/avgm2u562itwpkl/Imagenet.tar.gz
tar -xvzf Imagenet.tar.gz
cd ..

Downloading Neural Network Models

We provide download links of four pre-trained models.

Here is an example code of downloading DenseNet-BC trained on CIFAR-10. In the root directory, run

mkdir models
cd models
wget https://www.dropbox.com/s/wr4kjintq1tmorr/densenet10.pth.tar.gz
tar -xvzf densenet10.pth.tar.gz
cd ..

Running

Here is an example code reproducing the results of DenseNet-BC trained on CIFAR-10 where TinyImageNet (crop) is the out-of-distribution dataset. The temperature is set as 1000, and perturbation magnitude is set as 0.0014. In the root directory, run

cd code
# model: DenseNet-BC, in-distribution: CIFAR-10, out-distribution: TinyImageNet (crop)
# magnitude: 0.0014, temperature 1000, gpu: 0
python main.py --nn densenet10 --out_dataset Imagenet --magnitude 0.0014 --temperature 1000 --gpu 0

Note: Please choose arguments according to the following.

args

  • args.nn: the arguments of neural networks are shown as follows

    Nerual Network Models args.nn
    DenseNet-BC trained on CIFAR-10 densenet10
    DenseNet-BC trained on CIFAR-100 densenet100
  • args.out_dataset: the arguments of out-of-distribution datasets are shown as follows

    Out-of-Distribution Datasets args.out_dataset
    Tiny-ImageNet (crop) Imagenet
    Tiny-ImageNet (resize) Imagenet_resize
    LSUN (crop) LSUN
    LSUN (resize) LSUN_resize
    iSUN iSUN
    Uniform random noise Uniform
    Gaussian random noise Gaussian
  • args.magnitude: the optimal noise magnitude can be found below. In practice, the optimal choices of noise magnitude are model-specific and need to be tuned accordingly.

    Out-of-Distribution Datasets densenet10 densenet100 wideresnet10 wideresnet100
    Tiny-ImageNet (crop) 0.0014 0.0014 0.0005 0.0028
    Tiny-ImageNet (resize) 0.0014 0.0028 0.0011 0.0028
    LSUN (crop) 0 0.0028 0 0.0048
    LSUN (resize) 0.0014 0.0028 0.0006 0.002
    iSUN 0.0014 0.0028 0.0008 0.0028
    Uniform random noise 0.0014 0.0028 0.0014 0.0028
    Gaussian random noise 0.0014 0.0028 0.0014 0.0028
  • args.temperature: temperature is set to 1000 in all cases.

  • args.gpu: make sure you use the following gpu when running the code:

    Neural Network Models args.gpu
    densenet10 0
    densenet100 0
    wideresnet10 1
    wideresnet100 2

Outputs

Here is an example of output.

Neural network architecture:          DenseNet-BC-100
In-distribution dataset:                     CIFAR-10
Out-of-distribution dataset:     Tiny-ImageNet (crop)

                          Baseline         Our Method
FPR at TPR 95%:              34.8%               4.3% 
Detection error:              9.9%               4.6%
AUROC:                       95.3%              99.1%
AUPR In:                     96.4%              99.2%
AUPR Out:                    93.8%              99.1%
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022