BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

Overview

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer

Accepted as Poster in BMVC 2021

This is an official implementation in PyTorch of FS-QAT. Our paper is available at Arxiv

Updates

  • (October, 2021) We released FS-QAT training and inference code for ActivityNet dataset.
  • (October, 2021) FS-QAT is accepted in BMVC2021.

Abstract

Existing temporal action localization (TAL) works rely on a large number of training videos with exhaustive segment-level annotation, preventing them from scaling to new classes. As a solution to this problem, few-shot TAL (FS-TAL) aims to adapt a model to a new class represented by as few as a single video. Exiting FS-TAL methods assume trimmed training videos for new classes. However, this setting is not only unnatural – actions are typically captured in untrimmed videos, but also ignores background video segments containing vital contextual cues for foreground action segmentation. In this work, we first propose a new FS-TAL setting by proposing to use untrimmed training videos. Further, a novel FS-TAL model is proposed which maximizes the knowledge transfer from training classes whilst enabling the model to be dynamically adapted to both the new class and each video of that class simultaneously. This is achieved by introducing a query adaptive Transformer in the model. Extensive experiments on two action localization benchmarks demonstrate that our method can outperform all the stateof-the-art alternatives significantly in both single-domain and cross-domain scenarios.

Summary

  • First Few-Shot TAL setting to use Untrimmed Videos for both Support and Query
  • Unified Model can accomodate both Untrimmed and Trimmed Video without design change
  • Instead of meta-learning the entire network, only Transformer is meta-learned hence faster adaptation.
  • Intra-Class Variance is handled using this adaptation
  • Promising performance in Cross-Domain/Dataset settings.

Qualitative Performance

Training and Evaluation

Appologize for the messed up Code

Refactoring will be done soon ( delay due to CVPR workload )

To Train

python gtad_train_fs.py 

To Test

sh test_fs.sh

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@misc{nag2021fewshot,
      title={Few-Shot Temporal Action Localization with Query Adaptive Transformer}, 
      author={Sauradip Nag and Xiatian Zhu and Tao Xiang},
      year={2021},
      eprint={2110.10552},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Sauradip Nag
PhD Student, ReID Lab, CVSSP, University of Surrey , United Kingdom | Ex- IIT Madras | Ex - ISI, Kolkata. Website : https://sauradip.github.io
Sauradip Nag
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022