End-to-end machine learning project for rices detection

Overview

Basmatinet

Welcome to this project folks !

Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learning and MLOPS. So if you want to learn to train and deploy a simple model to recognize rice type basing on a photo, then you are at the right place.

0- Project's Roadmap

This project will consist to:

  • Train a Deep Learning model with Pytorch.
  • Transfert learning from Efficient Net.
  • Data augmentation with Albumentation.
  • Save trained model with early stopping.
  • Track the training with MLFLOW.
  • Serve the model with a Rest Api built with Flask.
  • Encode data in base64 client side before sending to the api server.
  • Package the application in microservice's fashion with Docker.
  • Yaml for configurations file.
  • Passing arguments anywhere it is possible.
  • Orchestrate the prediction service with Kubernetes (k8s) on Google Cloud Platform.
  • Pre-commit git hook.
  • Logging during training.
  • CI with github actions.
  • CD with terraform to build environment on Google Cloud Platform.
  • Save images and predictions in InfluxDB database.
  • Create K8s service endpoint for external InfluxDB database.
  • Create K8s secret for external InfluxDB database.
  • Unitary tests with Pytest (Fixtures and Mocks).

1- Install project's dependencies and packages

This project was developped in conda environment but you can use any python virtual environment but you should have installed some packages that are in basmatinet/requirements.txt

Python version: 3.8.12

# Move into the project root
$ cd basmatinet

# 1st alternative: using pip
$ pip install -r requirements.txt
# 2nd alternative
$ conda install --file requirements.txt

2- Train a basmatinet model

$ python src/train.py "/path/to/rice_image_dataset/" \
                     --batch-size 16 --nb-epochs 200 \
                     --workers 8 --early-stopping 5  \
                     --percentage 0.1 --cuda

3- Dockerize the model and push the Docker Image to Google Container Registry

1st step: Let's build a docker images

# Move into the app directory
$ cd basmatinet/app

# Build the machine learning serving app image
$ docker build -t basmatinet .

# Run a model serving app container outside of kubernetes (optionnal)
$ docker run -d -p 5000:5000 basmatinet

# Try an inference to test the endpoint
$ python frontend.py --filename "../images/arborio.jpg" --host-ip "0.0.0.0"

2nd step: Let's push the docker image into a Google Container Registry. But you should create a google cloud project to have PROJECT-ID and in this case you HOSTNAME will be "gcr.io" and you should enable GCR Api on google cloud platform.

# Re-tag the image and include the container in the image tag
$ docker tag basmatinet [HOSTNAME]/[PROJECT-ID]/basmatinet

# Push to container registry
$ docker push [HOSTNAME]/[PROJECT-ID]/basmatinet

4- Create a kubernetes cluster

First of all you should enable GKE Api on google cloud platform. And go to the cloud shell or stay on your host if you have gcloud binary already installed.

# Start a cluster
$ gcloud container clusters create k8s-gke-cluster --num-nodes 3 --machine-type g1-small --zone europe-west1-b

# Connect to the cluster
$ gcloud container clusters get-credentials k8s-gke-cluster --zone us-west1-b --project [PROJECT_ID]

4- Deploy the application on Kubernetes (Google Kubernetes Engine)

Create the deployement and the service on a kubernetes cluster.

# In the app directory
$ cd basmatinet/app
# Create the namespace
$ kubectl apply -f k8s/namespace.yaml
# Create the deployment
$ kubectl apply -f k8s/basmatinet-deployment.yaml --namespace=mlops-test
# Create the service
$ kubectl apply -f k8s/basmatinet-service.yaml --namespace=mlops-test

# Check that everything is alright with the following command and look for basmatinet-app in the output
$ kubectl get services

# The output should look like
NAME             TYPE           CLUSTER-IP    EXTERNAL-IP     PORT(S)          AGE
basmatinet-app   LoadBalancer   xx.xx.xx.xx   xx.xx.xx.xx   5000:xxxx/TCP      2m3s

Take the EXTERNAL-IP and test your service with the file basmatinet/app/frontend.py . Then you can cook your jollof with some basmatinet!!!

You might also like...
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

 Neural Dynamic Policies for End-to-End Sensorimotor Learning
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

 WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

Releases(v0.2.0)
  • v0.2.0(May 26, 2022)

    We add image building annd pushing to Google Container Registry. Moreover we add a last step to deploy on a Google Kubernetes Engine cluster. And this the first official release.

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(May 24, 2022)

Owner
Béranger
Machine Learning Engineer with high interest for Africa.
Béranger
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022