Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Related tags

Deep LearningINORig
Overview

Riggable 3D Face Reconstruction via In-Network Optimization

Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization".

[paper] [supp] [arXiv] [presen_video] [supp_video].

Installation

(1) Create an Anaconda environment.

conda env create -f env.yaml
conda activate INORig

(2) Clone the repository and install dependencies.

git clone https://github.com/zqbai-jeremy/INORig.git
cd INORig
pip install -r requirements_pip.txt

(3) Setup 3DMM

mkdir external
cd external
git clone https://github.com/zqbai-jeremy/face3d.git
cd face3d
  • Setup face3d as in YadiraF/face3d.

  • Download "Exp_Pca.bin" from Guo et al. (in "CoarseData" link of their repository) and copy to "<INORig directory>/external/face3d/examples/Data/BFM/Out/".

  • Download "std_exp.txt" from Deng et al. and copy to "<INORig directory>/external/face3d/examples/Data/BFM/Out/".

(5) Download pre-trained model (Due to the sensitivity of face swapping, please email [email protected] to request for the models. Please use your institution email and indicate in the email that you agree to only use the models for research purpose and not to share with 3rd parties. Sorry for the inconvenience and thank you for your understanding!) to "<INORig directory>/net_weights/". Need to create the folder. Unzip to get .pth files. "Ours.pth" is the basic version. "Ours(R).pth" is a more robust while less accurate version. Experiments in the paper are performed with these models.

Run Demo

  • Modify directory paths in demo.py and run
cd <INORig_directory>
python demo.py
  • Variables:

    • rig_img_dir: Folder contains images to build the rig.

    • src_vid_path: Video path to drive the rig.

    • out_dir: Folder for outputs. Reconstructions of images are in "<out_dir>/mesh" and "<out_dir>/visualization". Video reconstruction and retargeting are in "<out_dir>/videos".

  • The example video clip "<INORig directory>/examples/videos/clip1.mp4" is from https://www.youtube.com/watch?v=ikAfrKf5A8I

Acknowledge

  • Thank Ayush Tewari, Soubhik Sanyal and Jiaxiang Shang for helping the evaluations!

  • Thank for the helpful tools from YadiraF/face3d!

Citation

@InProceedings{Bai_2021_CVPR,
    author    = {Bai, Ziqian and Cui, Zhaopeng and Liu, Xiaoming and Tan, Ping},
    title     = {Riggable 3D Face Reconstruction via In-Network Optimization},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {6216-6225}
}
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022