Task-based end-to-end model learning in stochastic optimization

Overview

Task-based End-to-end Model Learning in Stochastic Optimization

This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains the PyTorch source code to reproduce the experiments in our paper Task-based End-to-end Model Learning in Stochastic Optimization.

If you find this repository helpful in your publications, please consider citing our paper.

@inproceedings{donti2017task,
  title={Task-based end-to-end model learning in stochastic optimization},
  author={Donti, Priya and Amos, Brandon and Kolter, J Zico},
  booktitle={Advances in Neural Information Processing Systems},
  pages={5484--5494},
  year={2017}
}

Introduction

As machine learning techniques have become more ubiquitous, it has become common to see machine learning prediction algorithms operating within some larger process. However, the criteria by which we train machine learning algorithms often differ from the ultimate criteria on which we evaluate them.

This repository demonstrates an end-to-end approach for learning probabilistic machine learning models within the context of stochastic programming, in a manner that directly captures the ultimate task-based objective for which they will be used. Specifically, we evaluate our approach in the context of (a) a generic inventory stock problem and (b) an electrical grid scheduling task based on over eight years of data from PJM.

Please see our paper Task-based End-to-end Model Learning in Stochastic Optimization and the code in this repository (locuslab/e2e-model-learning) for more details about the general approach proposed and our initial experimental implementations.

Setup and Dependencies

Inventory Stock Problem (Newsvendor) Experiments

Experiments considering a "conditional" variation of the inventory stock problem. Problem instances are generated via random sampling.

newsvendor
├── main.py - Run inventory stock problem experiments. (See arguments.)
├── task_net.py - Functions for our task-based end-to-end model learning approach.
├── mle.py - Functions for linear maximum likelihood estimation approach.
├── mle_net.py - Functions for nonlinear maximum likelihood estimation approach.
├── policy_net.py - Functions for end-to-end neural network policy model.
├── batch.py - Helper functions for minibatched evaluation.
├── plot.py - Plot experimental results.
└── constants.py - Constants to set GPU vs. CPU.

Load Forecasting and Generator Scheduling Experiments

Experiments considering a realistic grid-scheduling task, in which electricity generation is scheduled based on some (unknown) distribution over electricity demand. Historical load data for these experiments were obtained from PJM.

power_sched
├── main.py - Run load forecasting problem experiments. (See arguments.)
├── model_classes.py - Models used for experiments.
├── nets.py - Functions for RMSE, cost-weighted RMSE, and task nets.
├── plot.py - Plot experimental results.
├── constants.py - Constants to set GPU vs. CPU.
└── pjm_load_data_*.txt - Historical load data from PJM.

Price Forecasting and Battery Storage Experiments

Experiments considering a realistic battery arbitrage task, in which a power grid-connected battery generates a charge/discharge schedule based on some (unknown) distribution over energy prices. Historical energy price data for these experiments were obtained from PJM.

battery_storage
├── main.py - Run battery storage problem experiments. (See arguments.)
├── model_classes.py - Models used for experiments.
├── nets.py - Functions for RMSE and task nets.
├── calc_stats.py - Calculate experimental result stats.
├── constants.py - Constants to set GPU vs. CPU.
└── storage_data.csv - Historical energy price data from PJM.

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1252522.

Licensing

Unless otherwise stated, the source code is copyright Carnegie Mellon University and licensed under the Apache 2.0 License.

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Alex Pashevich 62 Dec 24, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022