Task-based end-to-end model learning in stochastic optimization

Overview

Task-based End-to-end Model Learning in Stochastic Optimization

This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains the PyTorch source code to reproduce the experiments in our paper Task-based End-to-end Model Learning in Stochastic Optimization.

If you find this repository helpful in your publications, please consider citing our paper.

@inproceedings{donti2017task,
  title={Task-based end-to-end model learning in stochastic optimization},
  author={Donti, Priya and Amos, Brandon and Kolter, J Zico},
  booktitle={Advances in Neural Information Processing Systems},
  pages={5484--5494},
  year={2017}
}

Introduction

As machine learning techniques have become more ubiquitous, it has become common to see machine learning prediction algorithms operating within some larger process. However, the criteria by which we train machine learning algorithms often differ from the ultimate criteria on which we evaluate them.

This repository demonstrates an end-to-end approach for learning probabilistic machine learning models within the context of stochastic programming, in a manner that directly captures the ultimate task-based objective for which they will be used. Specifically, we evaluate our approach in the context of (a) a generic inventory stock problem and (b) an electrical grid scheduling task based on over eight years of data from PJM.

Please see our paper Task-based End-to-end Model Learning in Stochastic Optimization and the code in this repository (locuslab/e2e-model-learning) for more details about the general approach proposed and our initial experimental implementations.

Setup and Dependencies

Inventory Stock Problem (Newsvendor) Experiments

Experiments considering a "conditional" variation of the inventory stock problem. Problem instances are generated via random sampling.

newsvendor
├── main.py - Run inventory stock problem experiments. (See arguments.)
├── task_net.py - Functions for our task-based end-to-end model learning approach.
├── mle.py - Functions for linear maximum likelihood estimation approach.
├── mle_net.py - Functions for nonlinear maximum likelihood estimation approach.
├── policy_net.py - Functions for end-to-end neural network policy model.
├── batch.py - Helper functions for minibatched evaluation.
├── plot.py - Plot experimental results.
└── constants.py - Constants to set GPU vs. CPU.

Load Forecasting and Generator Scheduling Experiments

Experiments considering a realistic grid-scheduling task, in which electricity generation is scheduled based on some (unknown) distribution over electricity demand. Historical load data for these experiments were obtained from PJM.

power_sched
├── main.py - Run load forecasting problem experiments. (See arguments.)
├── model_classes.py - Models used for experiments.
├── nets.py - Functions for RMSE, cost-weighted RMSE, and task nets.
├── plot.py - Plot experimental results.
├── constants.py - Constants to set GPU vs. CPU.
└── pjm_load_data_*.txt - Historical load data from PJM.

Price Forecasting and Battery Storage Experiments

Experiments considering a realistic battery arbitrage task, in which a power grid-connected battery generates a charge/discharge schedule based on some (unknown) distribution over energy prices. Historical energy price data for these experiments were obtained from PJM.

battery_storage
├── main.py - Run battery storage problem experiments. (See arguments.)
├── model_classes.py - Models used for experiments.
├── nets.py - Functions for RMSE and task nets.
├── calc_stats.py - Calculate experimental result stats.
├── constants.py - Constants to set GPU vs. CPU.
└── storage_data.csv - Historical energy price data from PJM.

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1252522.

Licensing

Unless otherwise stated, the source code is copyright Carnegie Mellon University and licensed under the Apache 2.0 License.

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021