Totally Versatile Miscellanea for Pytorch

Overview

Totally Versatile Miscellania for PyTorch

Thomas Viehmann [email protected]

This repository collects various things I have implmented for PyTorch

Layers, autogra functions and calculations

Learning approaches

Generative Adversarial Networks

Wasserstein GAN - See also my two blog posts on the subject

Comments
  • Need pytorch nightly?

    Need pytorch nightly?

    Hi! Thank you for making the Wasserstein loss extension available. Forgive me if this isn't an issue, I am not an expert user. I just wanted to comment that when I tried to run the extension in my computer (torch 1.1.0) I was getting this error in compilation time:

    error: identifier "TORCH_CHECK" is undefined
    

    After installing the latest pytorch-nightly everything seems to run smoothly, so I guess this may be a requirement?

    opened by agaldran 4
  • Problem with scripting the model

    Problem with scripting the model

    Hi Sir,

    I have started learning torchscript and your blog was a great source to understand JIT. I tried to run the notebook pytorch_automatic_optimization_jit.ipynb but I am unable to run the c++, CUDA, CPU kernels also I am unable to get the similar graph present in the notebook. I have attached the link of the colab, I am working with.

    I request you to help me with this problem

    Colan Notebook

    opened by Midhilesh29 1
  • Error building extension 'wasserstein'

    Error building extension 'wasserstein'

    Hi @t-vi

    First of all, thank you for sharing your impressive work. Right now I'm using the code you used for comparison to calculate Wasserstein loss. However, that take around 4 minutes for one batch in my case. That takes too long. And your work seems much faster.

    However, when I trying to run your code on my server, I got error like below: Do you know what this means. The server I used is a team server, I don't want to change gcc without know if they will massup the current environment.

    Appreciate any help you can provide!

    /home/anyu/anaconda3/lib/python3.6/site-packages/torch/utils/cpp_extension.py:118: UserWarning:

                               !! WARNING !!
    

    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Your compiler (c++) may be ABI-incompatible with PyTorch! Please use a compiler that is ABI-compatible with GCC 4.9 and above. See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html.

    See https://gist.github.com/goldsborough/d466f43e8ffc948ff92de7486c5216d6 for instructions on how to install GCC 4.9 or higher. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!
    

    warnings.warn(ABI_INCOMPATIBILITY_WARNING.format(compiler))

    CalledProcessError Traceback (most recent call last) ~/anaconda3/lib/python3.6/site-packages/torch/utils/cpp_extension.py in _build_extension_module(name, build_directory) 758 subprocess.check_output( --> 759 ['ninja', '-v'], stderr=subprocess.STDOUT, cwd=build_directory) 760 except subprocess.CalledProcessError:

    ~/anaconda3/lib/python3.6/subprocess.py in check_output(timeout, *popenargs, **kwargs) 335 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True, --> 336 **kwargs).stdout 337

    ~/anaconda3/lib/python3.6/subprocess.py in run(input, timeout, check, *popenargs, **kwargs) 417 raise CalledProcessError(retcode, process.args, --> 418 output=stdout, stderr=stderr) 419 return CompletedProcess(process.args, retcode, stdout, stderr)

    CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1.

    During handling of the above exception, another exception occurred:

    RuntimeError Traceback (most recent call last) in () 1 import torch 2 wasserstein_ext = torch.utils.cpp_extension.load_inline("wasserstein", cpp_sources="", cuda_sources=cuda_source, ----> 3 extra_cuda_cflags=["--expt-relaxed-constexpr"] ) 4 5 def sinkstep(dist, log_nu, log_u, lam: float):

    ~/anaconda3/lib/python3.6/site-packages/torch/utils/cpp_extension.py in load_inline(name, cpp_sources, cuda_sources, functions, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda) 639 build_directory, 640 verbose, --> 641 with_cuda=with_cuda) 642 643

    ~/anaconda3/lib/python3.6/site-packages/torch/utils/cpp_extension.py in _jit_compile(name, sources, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda) 680 if verbose: 681 print('Building extension module {}...'.format(name)) --> 682 _build_extension_module(name, build_directory) 683 finally: 684 baton.release()

    ~/anaconda3/lib/python3.6/site-packages/torch/utils/cpp_extension.py in _build_extension_module(name, build_directory) 763 # error.output contains the stdout and stderr of the build attempt. 764 raise RuntimeError("Error building extension '{}': {}".format( --> 765 name, error.output.decode())) 766 767

    RuntimeError: Error building extension 'wasserstein': [1/3] /usr/local/cuda/bin/nvcc -DTORCH_EXTENSION_NAME=wasserstein -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/TH -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/THC -I/usr/local/cuda/include -I/home/anyu/anaconda3/include/python3.6m -D_GLIBCXX_USE_CXX11_ABI=0 --compiler-options '-fPIC' --expt-relaxed-constexpr -std=c++11 -c /tmp/torch_extensions/wasserstein/cuda.cu -o cuda.cuda.o FAILED: cuda.cuda.o /usr/local/cuda/bin/nvcc -DTORCH_EXTENSION_NAME=wasserstein -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/TH -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/THC -I/usr/local/cuda/include -I/home/anyu/anaconda3/include/python3.6m -D_GLIBCXX_USE_CXX11_ABI=0 --compiler-options '-fPIC' --expt-relaxed-constexpr -std=c++11 -c /tmp/torch_extensions/wasserstein/cuda.cu -o cuda.cuda.o /tmp/torch_extensions/wasserstein/cuda.cu:6:29: fatal error: torch/extension.h: No such file or directory compilation terminated. [2/3] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=wasserstein -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/TH -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/THC -I/usr/local/cuda/include -I/home/anyu/anaconda3/include/python3.6m -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++11 -c /tmp/torch_extensions/wasserstein/main.cpp -o main.o ninja: build stopped: subcommand failed.

    opened by anyuzoey 1
  • FileNotFoundError: [Errno 2] No such file or directory: 'ninja': 'ninja'

    FileNotFoundError: [Errno 2] No such file or directory: 'ninja': 'ninja'

    Why I had install ninja with conda but still met this bug?? Please help me! T_T

    ninja --version

    1.7.2

    $ nvcc --version

    nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2019 NVIDIA Corporation Built on Sun_Jul_28_19:07:16_PDT_2019 Cuda compilation tools, release 10.1, V10.1.243

    pytorch 1.2.0

    py3.7_cuda10.0.130_cudnn7.6.2_0

    output

    Traceback (most recent call last):
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 890, in verify_ninja_availability
        subprocess.check_call('ninja --version'.split(), stdout=devnull)
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/subprocess.py", line 342, in check_call
        retcode = call(*popenargs, **kwargs)
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/subprocess.py", line 323, in call
        with Popen(*popenargs, **kwargs) as p:
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/subprocess.py", line 775, in __init__
        restore_signals, start_new_session)
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/subprocess.py", line 1522, in _execute_child
        raise child_exception_type(errno_num, err_msg, err_filename)
    FileNotFoundError: [Errno 2] No such file or directory: 'ninja': 'ninja'
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "/devdata/new_Relation_Extraction/test_wasserstein.py", line 208, in <module>
        extra_cuda_cflags=["--expt-relaxed-constexpr"])
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 787, in load_inline
        is_python_module)
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 827, in _jit_compile
        with_cuda=with_cuda)
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 850, in _write_ninja_file_and_build
        verify_ninja_availability()
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 892, in verify_ninja_availability
        raise RuntimeError("Ninja is required to load C++ extensions")
    RuntimeError: Ninja is required to load C++ extensions
    

    code

    import math
    import torch
    import torch.utils
    import torch.utils.cpp_extension
    # % matplotlib inline
    #
    
    # from matplotlib import pyplot
    # import matplotlib.transforms
    #
    # import ot  # for comparison
    
    cuda_source = """
    
    #include <torch/extension.h>
    #include <ATen/core/TensorAccessor.h>
    #include <ATen/cuda/CUDAContext.h>
    
    using at::RestrictPtrTraits;
    using at::PackedTensorAccessor;
    
    #if defined(__HIP_PLATFORM_HCC__)
    constexpr int WARP_SIZE = 64;
    #else
    constexpr int WARP_SIZE = 32;
    #endif
    
    // The maximum number of threads in a block
    #if defined(__HIP_PLATFORM_HCC__)
    constexpr int MAX_BLOCK_SIZE = 256;
    #else
    constexpr int MAX_BLOCK_SIZE = 512;
    #endif
    
    // Returns the index of the most significant 1 bit in `val`.
    __device__ __forceinline__ int getMSB(int val) {
      return 31 - __clz(val);
    }
    
    // Number of threads in a block given an input size up to MAX_BLOCK_SIZE
    static int getNumThreads(int nElem) {
    #if defined(__HIP_PLATFORM_HCC__)
      int threadSizes[5] = { 16, 32, 64, 128, MAX_BLOCK_SIZE };
    #else
      int threadSizes[5] = { 32, 64, 128, 256, MAX_BLOCK_SIZE };
    #endif
      for (int i = 0; i != 5; ++i) {
        if (nElem <= threadSizes[i]) {
          return threadSizes[i];
        }
      }
      return MAX_BLOCK_SIZE;
    }
    
    
    template <typename T>
    __device__ __forceinline__ T WARP_SHFL_XOR(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
    {
    #if CUDA_VERSION >= 9000
        return __shfl_xor_sync(mask, value, laneMask, width);
    #else
        return __shfl_xor(value, laneMask, width);
    #endif
    }
    
    // While this might be the most efficient sinkhorn step / logsumexp-matmul implementation I have seen,
    // this is awfully inefficient compared to matrix multiplication and e.g. NVidia cutlass may provide
    // many great ideas for improvement
    template <typename scalar_t, typename index_t>
    __global__ void sinkstep_kernel(
      // compute log v_bj = log nu_bj - logsumexp_i 1/lambda dist_ij - log u_bi
      // for this compute maxdiff_bj = max_i(1/lambda dist_ij - log u_bi)
      // i = reduction dim, using threadIdx.x
      PackedTensorAccessor<scalar_t, 2, RestrictPtrTraits, index_t> log_v,
      const PackedTensorAccessor<scalar_t, 2, RestrictPtrTraits, index_t> dist,
      const PackedTensorAccessor<scalar_t, 2, RestrictPtrTraits, index_t> log_nu,
      const PackedTensorAccessor<scalar_t, 2, RestrictPtrTraits, index_t> log_u,
      const scalar_t lambda) {
    
      using accscalar_t = scalar_t;
    
      __shared__ accscalar_t shared_mem[2 * WARP_SIZE];
    
      index_t b = blockIdx.y;
      index_t j = blockIdx.x;
      int tid = threadIdx.x;
    
      if (b >= log_u.size(0) || j >= log_v.size(1)) {
        return;
      }
      // reduce within thread
      accscalar_t max = -std::numeric_limits<accscalar_t>::infinity();
      accscalar_t sumexp = 0;
    
      if (log_nu[b][j] == -std::numeric_limits<accscalar_t>::infinity()) {
        if (tid == 0) {
          log_v[b][j] = -std::numeric_limits<accscalar_t>::infinity();
        }
        return;
      }
    
      for (index_t i = threadIdx.x; i < log_u.size(1); i += blockDim.x) {
        accscalar_t oldmax = max;
        accscalar_t value = -dist[i][j]/lambda + log_u[b][i];
        max = max > value ? max : value;
        if (oldmax == -std::numeric_limits<accscalar_t>::infinity()) {
          // sumexp used to be 0, so the new max is value and we can set 1 here,
          // because we will come back here again
          sumexp = 1;
        } else {
          sumexp *= exp(oldmax - max);
          sumexp += exp(value - max); // if oldmax was not -infinity, max is not either...
        }
      }
    
      // now we have one value per thread. we'll make it into one value per warp
      // first warpSum to get one value per thread to
      // one value per warp
      for (int i = 0; i < getMSB(WARP_SIZE); ++i) {
        accscalar_t o_max    = WARP_SHFL_XOR(max, 1 << i, WARP_SIZE);
        accscalar_t o_sumexp = WARP_SHFL_XOR(sumexp, 1 << i, WARP_SIZE);
        if (o_max > max) { // we're less concerned about divergence here
          sumexp *= exp(max - o_max);
          sumexp += o_sumexp;
          max = o_max;
        } else if (max != -std::numeric_limits<accscalar_t>::infinity()) {
          sumexp += o_sumexp * exp(o_max - max);
        }
      }
    
      __syncthreads();
      // this writes each warps accumulation into shared memory
      // there are at most WARP_SIZE items left because
      // there are at most WARP_SIZE**2 threads at the beginning
      if (tid % WARP_SIZE == 0) {
        shared_mem[tid / WARP_SIZE * 2] = max;
        shared_mem[tid / WARP_SIZE * 2 + 1] = sumexp;
      }
      __syncthreads();
      if (tid < WARP_SIZE) {
        max = (tid < blockDim.x / WARP_SIZE ? shared_mem[2 * tid] : -std::numeric_limits<accscalar_t>::infinity());
        sumexp = (tid < blockDim.x / WARP_SIZE ? shared_mem[2 * tid + 1] : 0);
      }
      for (int i = 0; i < getMSB(WARP_SIZE); ++i) {
        accscalar_t o_max    = WARP_SHFL_XOR(max, 1 << i, WARP_SIZE);
        accscalar_t o_sumexp = WARP_SHFL_XOR(sumexp, 1 << i, WARP_SIZE);
        if (o_max > max) { // we're less concerned about divergence here
          sumexp *= exp(max - o_max);
          sumexp += o_sumexp;
          max = o_max;
        } else if (max != -std::numeric_limits<accscalar_t>::infinity()) {
          sumexp += o_sumexp * exp(o_max - max);
        }
      }
    
      if (tid == 0) {
        log_v[b][j] = (max > -std::numeric_limits<accscalar_t>::infinity() ?
                       log_nu[b][j] - log(sumexp) - max :
                       -std::numeric_limits<accscalar_t>::infinity());
      }
    }
    
    template <typename scalar_t>
    torch::Tensor sinkstep_cuda_template(const torch::Tensor& dist, const torch::Tensor& log_nu, const torch::Tensor& log_u,
                                         const double lambda) {
      TORCH_CHECK(dist.is_cuda(), "need cuda tensors");
      TORCH_CHECK(dist.device() == log_nu.device() && dist.device() == log_u.device(), "need tensors on same GPU");
      TORCH_CHECK(dist.dim()==2 && log_nu.dim()==2 && log_u.dim()==2, "invalid sizes");
      TORCH_CHECK(dist.size(0) == log_u.size(1) &&
               dist.size(1) == log_nu.size(1) &&
               log_u.size(0) == log_nu.size(0), "invalid sizes");
      auto log_v = torch::empty_like(log_nu);
      using index_t = int32_t;
    
      auto log_v_a = log_v.packed_accessor<scalar_t, 2, RestrictPtrTraits, index_t>();
      auto dist_a = dist.packed_accessor<scalar_t, 2, RestrictPtrTraits, index_t>();
      auto log_nu_a = log_nu.packed_accessor<scalar_t, 2, RestrictPtrTraits, index_t>();
      auto log_u_a = log_u.packed_accessor<scalar_t, 2, RestrictPtrTraits, index_t>();
    
      auto stream = at::cuda::getCurrentCUDAStream();
    
      int tf = getNumThreads(log_u.size(1));
      dim3 blocks(log_v.size(1), log_u.size(0));
      dim3 threads(tf);
    
      sinkstep_kernel<<<blocks, threads, 2*WARP_SIZE*sizeof(scalar_t), stream>>>(
        log_v_a, dist_a, log_nu_a, log_u_a, static_cast<scalar_t>(lambda)
        );
    
      return log_v;
    }
    
    torch::Tensor sinkstep_cuda(const torch::Tensor& dist, const torch::Tensor& log_nu, const torch::Tensor& log_u,
                                const double lambda) {
        return AT_DISPATCH_FLOATING_TYPES(log_u.scalar_type(), "sinkstep", [&] {
           return sinkstep_cuda_template<scalar_t>(dist, log_nu, log_u, lambda);
        });
    }
    
    PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
      m.def("sinkstep", &sinkstep_cuda, "sinkhorn step");
    }
    
    """
    
    wasserstein_ext = torch.utils.cpp_extension.load_inline("wasserstein", cpp_sources="", cuda_sources=cuda_source,
                                                            extra_cuda_cflags=["--expt-relaxed-constexpr"])
    
    opened by heslowen 1
  • Confusion about Lambda

    Confusion about Lambda

    Hello, Firstly thank you for the awesome work! I had a question in the Pytorch_Wasserstein.ipynb:

    In the WassersteinLossVanilla, why is it self.K = torch.exp(-self.cost/self.lam)? Shouldn't it be
    self.K = torch.exp(-self.cost*self.lam)?

    In mocha also it is the above https://github.com/pluskid/Mocha.jl/blob/5e15b882d7dd615b0c5159bb6fde2cc040b2d8ee/src/layers/wasserstein-loss.jl#L33

    Have you changed it because "Note that we use a different convention for $\lambda$ (i.e. we use $\lambda$ as the weight for the regularisation, later versions of the above use $\lambda^-1$ as the weight)." ?

    Also what is the reason for the above?

    opened by ForgottenOneNyx 1
  • issue about pytorch wassdistance

    issue about pytorch wassdistance

    I tried to reproduce the pytorch wassdistance under windows system,but it show some problems bellow Traceback (most recent call last): File "", line 1, in File "C:\Users\Alienware.conda\envs\pytorch\lib\site-packages\torch\utils\cpp_extension.py", line 1293, in load_inline return _jit_compile( File "C:\Users\Alienware.conda\envs\pytorch\lib\site-packages\torch\utils\cpp_extension.py", line 1382, in _jit_compile return _import_module_from_library(name, build_directory, is_python_module) File "C:\Users\Alienware.conda\envs\pytorch\lib\site-packages\torch\utils\cpp_extension.py", line 1775, in _import_module_from_library module = importlib.util.module_from_spec(spec) File "", line 556, in module_from_spec File "", line 1166, in create_module File "", line 219, in _call_with_frames_removed ImportError: DLL load failed while importing wasserstein: The specified module could not be found

    opened by MinttHu 0
  • Consider transfering `load_inline` to `setuptools`?

    Consider transfering `load_inline` to `setuptools`?

    Hi! Thanks a lot for your great work about the wasserstein distance <Pytorch_Wasserstein.ipynb>!

    Since torch.utils.cpp_extension.load_inline will compile the cuda code every run, would you consider making it to setuptools, i.e., python setup.py install, so that one could load pre-build libraries?

    Sorry but I'm not familiar with this. Is there any barrier?

    Thanks!

    opened by yd-yin 0
  • Wasserstein implementation does not seem to be fully

    Wasserstein implementation does not seem to be fully "batched"

    Hi @t-vi,

    Thanks for sharing your code!

    I would like to ask a question regarding your implementation of the Sinkhorn algorithm. You stated that one of the main motivations was to obtain efficient batched computation. However, looking at the code I observe that it only supports the case where the cost matrix is the same across the batch:

    def forward(ctx, mu, nu, dist, lam=1e-3, N=100):
            assert mu.dim() == 2 and nu.dim() == 2 and dist.dim() == 2
            bs = mu.size(0)
            d1, d2 = dist.size()
            assert nu.size(0) == bs and mu.size(1) == d1 and nu.size(1) == d2
    

    That is, the shape dist is d1 x d2 instead of bs x d1 x d2. Is this expected?

    Thank you in advance for your reply.

    opened by netw0rkf10w 1
Releases(2018-03-13)
Owner
Thomas Viehmann
Mathematics and Inference at @MathInf I do a lot of @PyTorch work
Thomas Viehmann
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021