[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Overview

Enjoy-Hamburger 🍔

Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021)

Under construction.

Introduction

This repo provides the official implementation of Hamburger for further research. We sincerely hope that this paper can bring you inspiration about the Attention Mechanism, especially how the low-rankness and the optimization-driven method can help model the so-called Global Information in deep learning.

We model the global context issue as a low-rank completion problem and show that its optimization algorithms can help design global information blocks. This paper then proposes a series of Hamburgers, in which we employ the optimization algorithms for solving MDs to factorize the input representations into sub-matrices and reconstruct a low-rank embedding. Hamburgers with different MDs can perform favorably against the popular global context module self-attention when carefully coping with gradients back-propagated through MDs.

contents

We are working on some exciting topics. Please wait for our new papers!

Enjoy Hamburger, please!

Organization

This section introduces the organization of this repo.

We strongly recommend the readers to read the blog (incoming soon) as a supplement to the paper!

  • blog.
    • Some random thoughts about Hamburger and beyond.
    • Possible directions based on Hamburger.
    • FAQ.
  • seg.
    • We provide the PyTorch implementation of Hamburger (V1) in the paper and an enhanced version (V2) flavored with Cheese. Some experimental features are included in V2+.
    • We release the codebase for systematical research on the PASCAL VOC dataset, including the two-stage training on the trainaug and trainval datasets and the MSFlip test.
    • We offer three checkpoints of HamNet, in which one is 85.90+ with the test server link, while the other two are 85.80+ with the test server link 1 and link 2. You can reproduce the test results using the checkpoints combined with the MSFlip test code.
    • Statistics about HamNet that might ease further research.
  • gan.
    • Official implementation of Hamburger in TensorFlow.
    • Data preprocessing code for using ImageNet in tensorflow-datasets. (Possibly useful if you hope to run the JAX code of BYOL or other ImageNet training code with the Cloud TPUs.)
    • Training and evaluation protocol of HamGAN on the ImageNet.
    • Checkpoints of HamGAN-strong and HamGAN-baby.

TODO:

  • README doc for HamGAN.
  • PyTorch Hamburger with less encapsulation.
  • Suggestions for using and further developing Hamburger.
  • Blog in both English and Chinese.
  • We also consider adding a collection of popular context modules to this repo. It depends on the time. No Guarantee. Perhaps GuGu 🕊️ (which means standing someone up).

Citation

If you find our work interesting or helpful to your research, please consider citing Hamburger. :)

@inproceedings{
    ham,
    title={Is Attention Better Than Matrix Decomposition?},
    author={Zhengyang Geng and Meng-Hao Guo and Hongxu Chen and Xia Li and Ke Wei and Zhouchen Lin},
    booktitle={International Conference on Learning Representations},
    year={2021},
}

Contact

Feel free to contact me if you have additional questions or have interests in collaboration. Please drop me an email at [email protected]. Find me at Twitter. Thank you!

Response to recent emails may be slightly delayed to March 26th due to the deadlines of ICLR. I feel sorry, but people are always deadline-driven. QAQ

Acknowledgments

Our research is supported with Cloud TPUs from Google's Tensorflow Research Cloud (TFRC). Nice and joyful experience with the TFRC program. Thank you!

We would like to sincerely thank EMANet, PyTorch-Encoding, YLG, and TF-GAN for their awesome released code.

Owner
Gsunshine
Gsunshine
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022