AdaDM: Enabling Normalization for Image Super-Resolution

Related tags

Deep LearningAdaDM
Overview

AdaDM

AdaDM: Enabling Normalization for Image Super-Resolution.

You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN*/NLSN*) can be downloaded from Google Drive or BaiduYun. The password for BaiduYun is kymj.

📢 If you use BasicSR framework, you need to turn off the Exponential Moving Average (EMA) option when applying BN in the generator network (e.g., RRDBNet). You can disable EMA by setting ema_decay=0 in corresponding .yml configuration file.

Model Scale File name (.pt) Urban100 Manga109
EDSR 2 32.93 39.10
3 28.80 34.17
4 26.64 31.02
EDSR* 2 EDSR_AdaDM_DIV2K_X2 33.12 39.31
3 EDSR_AdaDM_DIV2K_X3 29.02 34.48
4 EDSR_AdaDM_DIV2K_X4 26.83 31.24
RDN 2 32.89 39.18
3 28.80 34.13
4 26.61 31.00
RDN* 2 RDN_AdaDM_DIV2K_X2 33.03 39.18
3 RDN_AdaDM_DIV2K_X3 28.95 34.29
4 RDN_AdaDM_DIV2K_X4 26.72 31.18
NLSN 2 33.42 39.59
3 29.25 34.57
4 26.96 31.27
NLSN* 2 NLSN_AdaDM_DIV2K_X2 33.59 39.67
3 NLSN_AdaDM_DIV2K_X3 29.53 34.95
4 NLSN_AdaDM_DIV2K_X4 27.24 31.73

Preparation

Please refer to EDSR for instructions on dataset download and software installation, then clone our repository as follows:

git clone https://github.com/njulj/AdaDM.git

Training

cd AdaDM/src
bash train.sh

Example training command in train.sh looks like:

CUDA_VISIBLE_DEVICES=$GPU_ID python3 main.py --template EDSR_paper --scale 2\
        --n_GPUs 1 --batch_size 16 --patch_size 96 --rgb_range 255 --res_scale 0.1\
        --save EDSR_AdaDM_Test_DIV2K_X2 --dir_data ../dataset --data_test Urban100\
        --epochs 1000 --decay 200-400-600-800 --lr 1e-4 --save_models --save_results 

Here, $GPU_ID specifies the GPU id used for training. EDSR_AdaDM_Test_DIV2K_X2 is the directory where all files are saved during training. --dir_data specifies the root directory for all datasets, you should place the DIV2K and benchmark (e.g., Urban100) datasets under this directory.

Testing

cd AdaDM/src
bash test.sh

Example testing command in test.sh looks like:

CUDA_VISIBLE_DEVICES=$GPU_ID python3 main.py --template EDSR_paper --scale $SCALE\
        --pre_train ../experiment/test/model/EDSR_AdaDM_DIV2K_X$SCALE.pt\
        --dir_data ../dataset --n_GPUs 1 --test_only --data_test $TEST_DATASET

Here, $GPU_ID specifies the GPU id used for testing. $SCALE indicates the upscaling factor (e.g., 2, 3, 4). --pre_train specifies the path of saved checkpoints. $TEST_DATASET indicates the dataset to be tested.

Acknowledgement

This repository is built on EDSR and NLSN. We thank the authors for sharing their codes.

Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022