PyTorch implementation for paper Neural Marching Cubes.

Related tags

Deep LearningNMC
Overview

NMC

PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang.

Paper | Supplementary Material (to be updated)

Citation

If you find our work useful in your research, please consider citing:

@article{chen2021nmc,
  title={Neural Marching Cubes},
  author={Zhiqin Chen and Hao Zhang},
  journal={arXiv preprint arXiv:2106.11272},
  year={2021}
}

Notice

We have implemented Neural Dual Contouring (NDC). NDC is based on Dual Contouring and thus much easier to implement than NMC. It produces less triangles and vertices (1/8 of NMC, 1/4 of NMC-lite, ≈MC33), with better triangle quality. It runs faster than NMC because it has significantly less values to predict for each cube (1 bool 3 float for NDC, v.s. 5 bool 51 float for NMC), therefore the network size could be significantly reduced. Yet, it cannot reconstruct some cube cases, and may introduce non-manifold edges.

Requirements

  • Python 3 with numpy, h5py, scipy and Cython
  • PyTorch 1.8 (other versions may also work)

Build Cython module:

python setup.py build_ext --inplace

Datasets and pre-trained weights

For data preparation, please see data_preprocessing.

We provide the ready-to-use datasets here.

Backup links:

We also provide the pre-trained network weights.

Backup links:

Note that the weights are divided into six folders:

Folder Method Input
1_NMC_sdf_unit_scale NMC SDF grid, each grid cell must have unit length
2_NMC_lite_sdf_unit_scale NMC-lite SDF grid, each grid cell must have unit length
3_NMC_voxel NMC Voxel grid, 1=occupied, 0=otherwise
4_NMC_lite_voxel NMC-lite Voxel grid, 1=occupied, 0=otherwise
5_NMC_sdf_scale_0.001-2 NMC SDF grid, each grid cell could have length from 0.001 to 2.0
6_NMC_lite_sdf_scale_0.001-2 NMC-lite SDF grid, each grid cell could have length from 0.001 to 2.0
This GitHub repo NMC = 5_NMC_sdf_scale_0.001-2

Training and Testing

Before training, please replace LUT_tess.npz (the Look-Up Table for cube tessellations) in the main directory with the corresponding version of your training target (either NMC or NMC-lite). Both versions of LUT_tess.npz can be found at tessellation.

To train/test NMC with SDF input:

python main.py --train_bool --epoch 400 --data_dir groundtruth/gt_NMC --input_type sdf
python main.py --train_float --epoch 400 --data_dir groundtruth/gt_NMC --input_type sdf
python main.py --test_bool_float --data_dir groundtruth/gt_NMC --input_type sdf

To train/test NMC-lite with SDF input:

python main.py --train_bool --epoch 400 --data_dir groundtruth/gt_simplified --input_type sdf
python main.py --train_float --epoch 400 --data_dir groundtruth/gt_simplified --input_type sdf
python main.py --test_bool_float --data_dir groundtruth/gt_simplified --input_type sdf

To train/test NMC with voxel input:

python main.py --train_bool --epoch 200 --data_dir groundtruth/gt_NMC --input_type voxel
python main.py --train_float --epoch 100 --data_dir groundtruth/gt_NMC --input_type voxel
python main.py --test_bool_float --data_dir groundtruth/gt_NMC --input_type voxel

To train/test NMC-lite with voxel input:

python main.py --train_bool --epoch 200 --data_dir groundtruth/gt_simplified --input_type voxel
python main.py --train_float --epoch 100 --data_dir groundtruth/gt_simplified --input_type voxel
python main.py --test_bool_float --data_dir groundtruth/gt_simplified --input_type voxel

To evaluate Chamfer Distance, Normal Consistency, F-score, Edge Chamfer Distance, Edge F-score, you need to have the ground truth normalized obj files ready in a folder objs. See data_preprocessing for how to prepare the obj files. Then you can run:

python eval_cd_nc_f1_ecd_ef1.py

To count the number of triangles and vertices, run:

python eval_v_t_count.py

If you want to test on your own dataset, please refer to data_preprocessing for how to convert obj files into SDF grids and voxel grids. If your data are not meshes (say your data are already voxel grids), you can modify the code in utils.py to read your own data format. Check function read_data_input_only in utils.py for an example.

Owner
Zhiqin Chen
Video game addict.
Zhiqin Chen
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website — VLN-CE Challenge — RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022