Balancing Principle for Unsupervised Domain Adaptation

Related tags

Deep Learningbpda
Overview

Blancing Principle for Domain Adaptation

NeurIPS 2021 Paper

alt text

Abstract

We address the unsolved algorithm design problem of choosing a justified regularization parameter in unsupervised domain adaptation. This problem is intriguing as no labels are available in the target domain. Our approach starts with the observation that the widely-used approach of minimizing the source error, weighted by a distance measure between source and target feature representations, shares characteristics with regularized ill-posed inverse problems. Regularization parameters in inverse problems can be chosen by the fundamental principle of balancing approximation and sampling errors. We use this principle to balance learning errors and domain distance in a target error bound. As a result, we obtain a theoretically justified rule for the choice of the regularization parameter. In contrast to the state of the art, our approach allows source and target distributions with disjoint supports. An empirical comparative study on benchmark datasets underpins the performance of our approach.

Installing

  1. Clone repository
git clone https://github.com/Xpitfire/bpda
cd bpda
  1. Create a python 3 conda environment
conda env create -f environment.yml
  1. Install package
pip install -e .
  1. Ensure that all required temp directories are available
  • tmp
  • runs
  • data

Compute Results

  1. Train domain adaptation method with balancing principle by calling the bp configs:
CUDA_VISIBLE_DEVICES=<device-id> PYTHONPATH=. python scripts/train.py --config configs/<your-bp-config>.json
# running a CMD experiment with BP
CUDA_VISIBLE_DEVICES=0 PYTHONPATH=. python scripts/train.py --config configs/config.minidomainnet_bp_cmd.json.json
# running a MMD experiment with BP
CUDA_VISIBLE_DEVICES=0 PYTHONPATH=. python scripts/train.py --config configs/config.minidomainnet_bp_mmd.json.json
  1. Evaluate results Set the respective base_dir and method setting in the viz/results_extractor_MiniDomainNet.py file and run:
PYTHONPATH=. python viz/results_extractor_MiniDomainNet.py

References

@article{Zellinger:21,
  title={The balancing principle for parameter choice in distance-regularized domain adaptation},
  author={Werner Zellinger and Natalia Shepeleva and Marius-Constantin Dinu and Hamid Eghbal-zadeh and Ho\'an Nguyen Duc and Bernhard Nessler and Sergei V.~Pereverzyev and Bernhard A. Moser},
  journal={NeurIPS},
  year={2021}
}
Owner
Marius-Constantin Dinu
AI, RL, ML, DL ... you name it - I'm in!!!
Marius-Constantin Dinu
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023