Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Overview

Python cx_Oracle Notebooks, 2022

The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database.

I am releasing them one-by-one.

The final list of notebooks will be:

  • Connecting
  • Queries
  • DML
  • CSV
  • JSON and SODA
  • PL/SQL
  • Objects

You may also be interested in the tutorial Python and Oracle Database Tutorial: Scripting for the Future. This is also found in "LiveLabs" format here, which lets you easily run it in Oracle Cloud.

Setup

An existing Oracle Database is required.

The JSON demo assumes Oracle Database and Oracle Client are 21c.

Install Python 3

See https://www.python.org/downloads/

Install Jupyter

See https://jupyter.org/install:

pip install notebook

Install cx_Oracle

See https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html:

pip install cx_Oracle

Install some libraries used by the examples:

pip install numpy matplotlib

To setup the cx_Oracle sample tables

On macOS set up libclntsh by finding the library directory

python
import cx_Oracle
cx_Oracle
exit()

With the appropriate path from above, create a sym link:

ln -s $HOME/Downloads/instantclient_19_8/libclntsh.dylib $HOME/.local/lib/python3.9/site-packages/

Create the cx_Oracle sample schema

Clone/download https://github.com/oracle/python-cx_Oracle/tree/master/samples

git clone https://github.com/oracle/python-cx_Oracle.git
rm -rf python-cx_Oracle/doc python-cx_Oracle/odpi python-cx_Oracle/src python-cx_Oracle/test python-cx_Oracle/*.* python-cx_Oracle/.git*

cd python-cx_Oracle/samples

Review python-cx_Oracle/samples/README.md

Edit python-cx_Oracle/samples/sample_env.py and set desired credentials and connection string

export CX_ORACLE_SAMPLES_MAIN_USER=pythondemo
export CX_ORACLE_SAMPLES_MAIN_PASSWORD=welcome
export CX_ORACLE_SAMPLES_EDITION_USER=pythoneditions
export CX_ORACLE_SAMPLES_EDITION_PASSWORD=welcome
export CX_ORACLE_SAMPLES_EDITION_NAME=python_e1
export CX_ORACLE_SAMPLES_CONNECT_STRING=localhost/orclpdb1
export CX_ORACLE_SAMPLES_DRCP_CONNECT_STRING=localhost/orclpdb1:pooled
export CX_ORACLE_SAMPLES_ADMIN_USER=system
export CX_ORACLE_SAMPLES_ADMIN_PASSWORD=oracle

Install the schema

python setup_samples.py

Start Jupyter:

cd ../..
jupyter notebook

Load each notebook *.ipynb file and step through it

Before running the notebooks cells, edit the connect string(s) near the top of each notebook.

The Connection notebook has an example that connects to Oracle Cloud. The wallet setup shown in the notebook is needed for this to be runnable. Also run export CLOUD_PASSWORD="whatever" before starting that notebook.

Owner
Christopher Jones
https://twitter.com/ghrd
Christopher Jones
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022