Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Overview

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation

Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regularization | PyTorch Simple GAN Experiments | Paper


Simple Complex Left Complex Left Complex Left Complex Left

This repo contains code for our OroJaR Regularization that encourages disentanglement in neural networks. It efficiently optimizes the Jacobian vectors of your neural network with repect to each input dimension to be orthogonal, leading to disentanglement results.

This repo contains the following:

Adding the OroJaR to Your Code

We provide portable implementations of the OroJaR that you can easily add to your projects.

Adding the OroJaR to your own code is very simple:

from orojar_pytorch import orojar

net = MyNeuralNet()
input = sample_input()
loss = orojar(G=net, z=input)
loss.backward()

Getting Started

This section and below are only needed if you want to visualize/evaluate/train with our code and models. For using the OroJaR in your own code, you can copy one of the files mentioned in the above section.

Both the TensorFlow and PyTorch codebases are tested with Linux on NVIDIA GPUs. You need at least Python 3.6. To get started, download this repo:

git clone https://github.com/csyxwei/OroJaR.git
cd OroJaR

Then, set-up your environment. You can use the environment.yml file to set-up a Conda environment:

conda env create -f environment.yml
conda activate orojar

If you opt to use your environment, we recommend using TensorFlow 1.14.0 and PyTorch >= 1.6.0. Now you're all set-up.

TensorFlow ProgressiveGAN Regularization Experiments

PyTorch BigGAN Direction Discovery Experiments

Other Experiments with Simple GAN

Citation

If our code aided your research, please cite our paper:

@inproceedings{wei2021orojar,
  title={Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation},
  author={Wei, Yuxiang and Shi, Yupeng and Liu, Xiao and Ji, Zhilong and Gao, Yuan and Wu, Zhongqin and Zuo, Wangmeng},
  booktitle={Proceedings of International Conference on Computer Vision (ICCV)},
  year={2021}
}
Owner
Yuxiang Wei
Miracles happen every day.
Yuxiang Wei
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022