CATE: Computation-aware Neural Architecture Encoding with Transformers

Overview

CATE: Computation-aware Neural Architecture Encoding with Transformers

Code for paper:

CATE: Computation-aware Neural Architecture Encoding with Transformers
Shen Yan, Kaiqiang Song, Fei Liu, Mi Zhang.
ICML 2021 (Long Talk).

CATE
Overview of CATE: It takes computationally similar architecture pairs as the input and trained to predict masked operators given the pairwise computation information. Apart from the cross-attention blocks, the pretrained Transformer encoder is used to extract architecture encodings for the downstream search.

The repository is built upon pybnn and nas-encodings.

Requirements

conda create -n tf python=3.7
source activate tf
cat requirements.txt | xargs -n 1 -L 1 pip install

Experiments on NAS-Bench-101

Dataset preparation on NAS-Bench-101

Install nasbench and download nasbench_only108.tfrecord in ./data folder.

python preprocessing/gen_json.py

Data will be saved in ./data/nasbench101.json.

Generate architecture pairs

python preprocessing/data_generate.py --dataset nasbench101 --flag extract_seq
python preprocessing/data_generate.py --dataset nasbench101 --flag build_pair --k 2 --d 2000000 --metric params

The corresponding training data and pairs will be saved in ./data/nasbench101/.

Alternatively, you can download the data train_data.pt, test_data.pt and pair indices train_pair_k2_d2000000_metric_params.pt, test_pair_k2_d2000000_metric_params.pt from here.

Pretraining

bash run_scripts/pretrain_nasbench101.sh

The pretrained models will be saved in ./model/.

Alternatively, you can download the pretrained model nasbench101_model_best.pth from here.

Extract the pretrained encodings

python inference/inference.py --pretrained_path model/nasbench101_model_best.pth.tar --train_data data/nasbench101/train_data.pt --valid_data data/nasbench101/test_data.pt --dataset nasbench101

The extracted embeddings will be saved in ./cate_nasbench101.pt.

Alternatively, you can download the pretrained embeddings cate_nasbench101.pt from here.

Run search experiments on NAS-Bench-101

bash run_scripts/run_search_nasbench101.sh

Search results will be saved in ./nasbench101/.

Experiments on NAS-Bench-301

Dataset preparation

Install nasbench301 and download the xgb_v1.0 and lgb_runtime_v1.0 file. You may need to make pytorch_geometric compatible with Pytorch and CUDA version.

python preprocessing/gen_json_darts.py # randomly sample 1,000,000 archs

Data will be saved in ./data/nasbench301_proxy.json.

Alternatively, you can download the json file nasbench301_proxy.json from here.

Generate architecture pairs

python preprocessing/data_generate.py --dataset nasbench301 --flag extract_seq
python preprocessing/data_generate.py --dataset nasbench301 --flag build_pair --k 1 --d 5000000 --metric flops

The correspoding training data and pairs will be saved in ./data/nasbench301/.

Alternatively, you can download the data train_data.pt, test_data.pt and pair indices train_pair_k1_d5000000_metric_flops.pt, test_pair_k1_d5000000_metric_flops.pt from here.

Pretraining

bash run_scripts/pretrain_nasbench301.sh

The pretrained models will be saved in ./model/.

Alternatively, you can download the pretrained model nasbench301_model_best.pth from here.

Extract the pretrained encodings

python inference/inference.py --pretrained_path model/nasbench301_model_best.pth.tar --train_data data/nasbench301/train_data.pt --valid_data data/nasbench301/test_data.pt --dataset nasbench301 --n_vocab 11

The extracted encodings will be saved in ./cate_nasbench301.pt.

Alternatively, you can download the pretrained embeddings cate_nasbench301.pt from here.

Run search experiments on NAS-Bench-301

bash run_scripts/run_search_nasbench301.sh

Search results will be saved in ./nasbench301/.

DARTS experiments without surrogate models

Download the pretrained embeddings cate_darts.pt from here.

python search_methods/dngo_ls_darts.py --dim 64 --init_size 16 --topk 5 --dataset darts --output_path bo  --embedding_path cate_darts.pt

Search log will be saved in ./darts/. Final search result will be saved in ./darts/bo/dim64.

Evaluate the learned cell on DARTS Search Space on CIFAR-10

python darts/cnn/train.py --auxiliary --cutout --arch cate_small
python darts/cnn/train.py --auxiliary --cutout --arch cate_large
  • Expected results (CATE-Small): 2.55% avg. test error with 3.5M model params.
  • Expected results (CATE-Large): 2.46% avg. test error with 4.1M model params.

Transfer learning on ImageNet

python darts/cnn/train_imagenet.py  --arch cate_small --seed 1 
python darts/cnn/train_imagenet.py  --arch cate_large --seed 1
  • Expected results (CATE-Small): 26.05% test error with 5.0M model params and 556M mult-adds.
  • Expected results (CATE-Large): 25.01% test error with 5.8M model params and 642M mult-adds.

Visualize the learned cell

python darts/cnn/visualize.py cate_small
python darts/cnn/visualize.py cate_large

Experiments on outside search space

Build outside search space dataset

bash run_scripts/generate_oo.sh

Data will be saved in ./data/nasbench101_oo_train.json and ./data/nasbench101_oo_test.json.

Generate architecture pairs

python preprocessing/data_generate_oo.py --flag extract_seq
python preprocessing/data_generate_oo.py --flag build_pair

The corresponding training data and pair indices will be saved in ./data/nasbench101/.

Pretraining

python run.py --do_train --parallel --train_data data/nasbench101/nasbench101_oo_trainSet_train.pt --train_pair data/nasbench101/oo_train_pairs_k2_params_dist2e6.pt  --valid_data data/nasbench101/nasbench101_oo_trainSet_validation.pt --valid_pair data/nasbench101/oo_validation_pairs_k2_params_dist2e6.pt --dataset oo

The pretrained models will be saved in ./model/.

Extract embeddings on outside search space

# Adjacency encoding
python inference/inference_adj.py
# CATE encoding
python inference/inference.py --pretrained_path model/oo_model_best.pth.tar --train_data data/nasbench101/nasbench101_oo_testSet_split1.pt --valid_data data/nasbench101/nasbench101_oo_testSet_split2.pt --dataset oo_nasbench101

The extracted encodings will be saved as ./adj_oo_nasbench101.pt and ./cate_oo_nasbench101.pt.

Alternatively, you can download the data, pair indices, pretrained models, and extracted embeddings from here.

Run MLP predictor experiments on outside search space

for s in {1..500}; do python search_methods/oo_mlp.py --dim 27 --seed $s --init_size 16 --topk 5 --dataset oo_nasbench101 --output_path np_adj  --embedding_path adj_oo_nasbench101.pt; done
for s in {1..500}; do python search_methods/oo_mlp.py --dim 64 --seed $s --init_size 16 --topk 5 --dataset oo_nasbench101 --output_path np_cate  --embedding_path cate_oo_nasbench101.pt; done

Search results will be saved in ./oo_nasbench101.

Citation

If you find this useful for your work, please consider citing:

@InProceedings{yan2021cate,
  title = {CATE: Computation-aware Neural Architecture Encoding with Transformers},
  author = {Yan, Shen and Song, Kaiqiang and Liu, Fei and Zhang, Mi},
  booktitle = {ICML},
  year = {2021}
}
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Saad Wazir 11 Dec 16, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022