BRepNet: A topological message passing system for solid models

Overview

BRepNet: A topological message passing system for solid models

This repository contains the an implementation of BRepNet: A topological message passing system for solid models.

BRepNet kernel image

About BRepNet

BRepNet is a neural network specifically designed to operate on solid models. It uses additional topological information present in the boundary representation (B-Rep) data structure to perform convolutions in a way which is not possible for arbitrary graphs. As B-Reps describe manifolds, they contain additional topological information which includes the ordering of edges around faces as well as the face adjacency. The topology is defined using oriented edges called coedges. Each coedge maintains an adjacency relationship with the next and previous coedge around its parent face, the mating coedge on the adjacent face, the parent face and the parent edge.

B-Rep topology and topological walks

Using this information, we can identify faces, edges and coedges in the neighborhood of some starting coedge (red), using topological walks. A topological walk is a series of instructions we move us from the starting coedge to a nearby entity. In the figure above (B) the we show a walk from the red starting coedge to its mating coedge, to the next coedge in the loop, to mating coedge and finally to the parent face. Using multiple topological walks we can define a group of entities in the neighborhood of the starting coedge. The instructions which define the neighboring entities are marked in the figure (C). The BRepNet implementation allows you to define any group of entities using a kernel file. See here for an example of a kernel file for kernel entities shown above.

Convolution

The BRepNet convolution algorithm concatenates feature vectors from the entities defined in the kernel file relative to the starting coedge (red). The resulting vector is passed through an MLP and the output becomes the hidden state for this coedge in the next network layer. The procedure is repeated for each coedge in the model, then new hidden state vectors for the faces and edges are generated by pooling the coedge hidden states onto their parent faces and edges. See the paper for more details. The actual implementation of the BRepNet convolution can been seen in the BRepNetLayer.forward() method.

Citing this work

@inproceedings{lambourne2021brepnet,
 title = {BRepNet: A Topological Message Passing System for Solid Models},
 author = {Joseph G. Lambourne and Karl D.D. Willis and Pradeep Kumar Jayaraman and Aditya Sanghi and Peter Meltzer and Hooman Shayani},
 eprint = {2104.00706},
 eprinttype = {arXiv},
 eprintclass = {cs.LG},
 booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
 year = {2021}
}

Quickstart

Setting up the environment

git clone https://github.com/AutodeskAILab/BRepNet.git
cd BRepNet
conda env create -f environment.yml
conda activate brepnet

For GPU training you will need to change the pytorch install to include your cuda version. i.e.

conda install pytorch cudatoolkit=11.1 -c pytorch -c conda-forge

For training with multiple workers you may hit errors of the form OSError: [Errno 24] Too many open files. In this case you need to increase the number of available file handles on the machine using

ulimit -Sn 10000

I find I need to set the limit to 10000 for 10 worker threads.

Download the dataset

You can download the step distribution of the Fusion 360 Gallery segmentation dataset from this link. The zip is 3.2Gb. Alternatively download using curl

cd /path/to/where_you_keep_data/
curl https://fusion-360-gallery-dataset.s3-us-west-2.amazonaws.com/segmentation/s2.0.0/s2.0.0.zip -o s2.0.0.zip
unzip s2.0.0.zip

If you are interested in building your own dataset using other step files then the procedure is documented here

Processing the STEP data

Run the quickstart script to extract topology and geometry information from the step data ready to train the network.

cd BRepNet/
python -m pipeline.quickstart --dataset_dir /path/to/where_you_keep_data/s2.0.0 --num_workers 5

This may take up to 10 minutes to complete.

Training the model

You are then ready to train the model. The quickstart script should exit telling you a default command to use which should be something like

python -m train.train \
  --dataset_file /path/to/where_you_keep_data/s2.0.0/processed/dataset.json \
  --dataset_dir  /path/to/where_you_keep_data/s2.0.0/processed/ \
  --max_epochs 50

You may want to adjust the --num_workers and --gpus parameters to match your machine. The model runs with the pytorch-lightning ddp-spawn mode, so you can choose either 1 worker thread and multiple gpus or multiple threads and a single gpu. The options and hyper-parameters for BRepNet can be seen in BRepNet.add_model_specific_args in brepnet.py. For a full list of all hyper-parameters including those defined in pytorch-lightning see

python -m train.train --help

Monitoring the loss, accuracy and IoU

By default BRepNet will log data to tensorboard in a folder called logs. Each time you run the model the logs will be placed in a separate folder inside the logs directory with paths based on the date and time. At the start of training the path to the log folder will be printed into the shell. To monitory the process you can use

cd BRepNet
tensorboard --logdir logs

A trained model is also saved every time the validation loss reaches a minimum. The model will be in the same folder as the tensorboard logs

./logs/<date>/<time>/checkpoints

Testing the network

python -m eval.test \
  --dataset_file /path/to/dataset_file.json \
  --dataset_dir /path/to/data_dir \
  --model BRepNet/logs/<day>/<time>/checkpoints/epoch=x-step=x.ckpt

Visualizing the segmentation data

You can visualize the segmentation data using a Jupyter notebook and the tools in the visualization folder. An example of how to view the segmentation information in the dataset is here.

Evaluating the segmentation on your own STEP data

To evaluate the model on you own step data you can use the script evaluate_folder.py

python -m eval.evaluate_folder  \
  --dataset_dir ./example_files/step_examples
  --dataset_file ./example_files/feature_standardization/s2.0.0_step_all_features.json \
  --model ./example_files/pretrained_models/pretrained_s2.0.0_step_all_features_0519_073100.ckpt

This will loop over all step or stp files in ./example_files/step_examples and create "logits" files in example_files/step_examples/temp_working/logits. The logits files contain one row for each face in the step data. The columns give the probabilities that the corresponding face belongs to a given segment.

The notebook find_and_display_segmentation.ipynb runs through the entire process of evaluating the model and displaying the predicted segmentation.

Running the tests

If you need to run the tests then this can be done using

python -m unittest

The new data-pipeline based on Open Cascade

The original BRepNet pipeline used proprietary code to process data from solid models and convert these to network input. In an effort to make this BRepNet as reusable as possible we have converted this pipeline to work with Open Cascade and python OCC. As with any kind of translation between solid model formats, the translation to step introduces some differences in the data. These are documented here. When training with the default options given above you will obtain very similar numbers to the ones published.

License

Shield: CC BY-NC-SA 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
Autodesk AI Lab
Autodesk AI Lab
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub

516 Dec 28, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
A collection of models for image<->text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022