Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

Overview

DART

Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners.

Environment

  • [email protected]
  • Use pip install -r requirements.txt to install dependencies.
  • wandb account is required if the user wants to search for best hyper-parameter combinations.

Data source

  • 16-shot GLUE dataset from LM-BFF.
  • Generated data consists of 5 random splits (13/21/42/87/100) for a task, each has 16 samples.

How to run

  • To run across each 5 splits in a task, use run.py:
    • In the arguments, encoder="inner" is the method proposed in the paper where verbalizers are other trainable tokens; encoder="manual" means verbalizers are selected fixed tokens; encoder="lstm" refers to the P-Tuning method.
$ python run.py -h
usage: run.py [-h] [--encoder {manual,lstm,inner,inner2}] [--task TASK]
              [--num_splits NUM_SPLITS] [--repeat REPEAT] [--load_manual]
              [--extra_mask_rate EXTRA_MASK_RATE]
              [--output_dir_suffix OUTPUT_DIR_SUFFIX]

optional arguments:
  -h, --help            show this help message and exit
  --encoder {manual,lstm,inner,inner2}
  --task TASK
  --num_splits NUM_SPLITS
  --repeat REPEAT
  --load_manual
  --extra_mask_rate EXTRA_MASK_RATE
  --output_dir_suffix OUTPUT_DIR_SUFFIX, -o OUTPUT_DIR_SUFFIX
  • To train and evaluate on a single split with details recorded, use inference.py.
    • Before running, [task_name, label_list, prompt_type] should be configured in the code.
    • prompt_type="none" refers to fixed verbalizer training, while "inner" refers to the method proposed in the paper. ("inner2" is deprecated 2-stage training)
  • To find optimal hyper-parameters for each task-split and reproduce our result, please use sweep.py:
    • Please refer to documentation for WandB for more details.
$ python sweep.py -h
usage: sweep.py [-h]
                [--task {SST-2,sst-5,mr,cr,mpqa,subj,trec,CoLA,MNLI,MNLI-mm,SNLI,QNLI,RTE-glue,MRPC,QQP}]
                [--encoder {none,mlp,lstm,inner,inner2}]
                [--seed_split {13,21,42,87,100} [{13,21,42,87,100} ...]]
                [--batch_size {4,8,16,24,32} [{4,8,16,24,32} ...]]
                [--sweep_id SWEEP_ID]

optional arguments:
  -h, --help            show this help message and exit
  --task {SST-2,sst-5,mr,cr,mpqa,subj,trec,CoLA,MNLI,MNLI-mm,SNLI,QNLI,RTE-glue,MRPC,QQP}
  --encoder {none,mlp,lstm,inner,inner2}
  --seed_split {13,21,42,87,100} [{13,21,42,87,100} ...]
  --batch_size {4,8,16,24,32} [{4,8,16,24,32} ...]
  --sweep_id SWEEP_ID
  • To train and evaluate with more customized configurations, use cli.py.
  • To analyze and visualize the results come from inference.py, use visualize.py and visualize_word_emb.py.

How to Cite

@article{DBLP:journals/corr/abs-2108-13161,
  author    = {Ningyu Zhang and
               Luoqiu Li and
               Xiang Chen and
               Shumin Deng and
               Zhen Bi and
               Chuanqi Tan and
               Fei Huang and
               Huajun Chen},
  title     = {Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
               Learners},
  journal   = {CoRR},
  volume    = {abs/2108.13161},
  year      = {2021},
  url       = {https://arxiv.org/abs/2108.13161},
  eprinttype = {arXiv},
  eprint    = {2108.13161},
  timestamp = {Thu, 13 Jan 2022 17:33:17 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2108-13161.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
Owner
ZJUNLP
NLP Group of Knowledge Engine Lab at Zhejiang University
ZJUNLP
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022