Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Overview

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

N|Solid

Overview

This example will show how to validate the status of our firewall before and after a software upgrade. This project will leverage JSNAPY over NETCONF RPCs.

In addition to the Ansible playbok, this project also ships with additional tools to help you along your way. You will find a Dockerfile for running the project in an isolated environment, and a Makefile for those of us that hate typing out everything all the time.

🚀 Executing the playbook

This project provides two unique methods of executing the playbook:

  1. Docker
  2. Your own Python environment

🐳 Docker

With Invoke installed on your machine

If you have invoke installed, you can use these two commands to build the container and run the playbook.

  1. build the container image with
$ invoke container
  1. run the playbook to push the network configuration changes
$ invoke ansible

Without Invoke installed on your system

  1. build the container image with
$ docker build -t registry.gitlab.com/cremsburg/juniper-automation-container:jsnapy-ospf files/docker/
  1. run the playbook to push the network configuration changes
$ docker run -it --rm \
    -v $PWD/files/:/home/tmp/files \
    -v $PWD/files/:/home/tmp/files \
    -w /home/tmp/files/ansible/ \
    registry.gitlab.com/cremsburg/juniper-automation-container:jsnapy-ospf ansible-playbook pb.jsnapy.ospf.yaml

〰️ Notes about Docker

If you are unsure if Docker is installed on your computer, then it's probably safe to suggest that it's not. If you're interested in learning more about the product, I encourage you to read a few blogs on the topic. A personal recommendation would be Digital Ocean

Some of the goodies placed in the docker folder are not relevant to our use case with Python. Feel free to delete them as you see fit, I simply wanted to share with you my Docker build process for all Juniper automation projects (including those based on Ansible). The world is your oyster and I won't judge you on whatever direction you take.

🐍 Your own Python environment

I have included a Poetry file for anyone saavy enough to take advantage. For the uninitiated, Poetry helps replicate Python environments between users with a single file. You'll need to have Poetry installed on your machine, for most users that will be solved with pip install poetry.

This is optional, I will share the methods of going with Poetry or without

  1. install Python dependencies

1a. with Poetry

$ poetry install

1b. without Poetry

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r files/docker/requirements.txt
  1. change into Ansible directory
$ cd files/ansible
  1. install official Ansible roles for Juniper devices
$ ansible-galaxy install juniper.junos
  1. run your Ansible playbook
$ ansible-playbook pb.jsnapy.ospf.yaml -i ../docker/inventory.yaml

⚠️ Running into an error about junos-eznc? ⚠️

There's an annoyance with Ansible and the way it interacts with your Python virtual environment. Do not let that frustrate you to the point that you ditch virtual environments altogether, instead use this quick technique to fix the problem.

From your terminal, find out the full path to Python within your virtual environment

$ which python
/home/cdot/.cache/pypoetry/virtualenvs/jsnapy-ospf-X7Chj_yD-py3.8/bin/python

Copy the output from your command and update the ansible.cfg file found in the same directory as the playbook. Do not update the ansible.cfg file in the root of this project, that won't accomplish anything.

add the following line to your ansible.cfg file, make sure to paste in the output of your clipboard rather than use my example

interpreter_python = /home/cdot/.cache/pypoetry/virtualenvs/jsnapy-ospf-X7Chj_yD-py3.8/bin/python

Sorry about that, one day Ansible will get it right. Until then, I recommend considering the Docker approach.

〰️ Notes about Python Virtual Environments

Similar to Docker, if you are unsure if you're using Python Virtual Environment features, it is safe to suggest that you're not. You are strongly recommended to using a Python Virtual Environment everywhere. You can really mess up your machine if you're too lazy and say "ehh, that seems like it's not important". It is. If it sounds like I'm speaking from experience, well I'll never admit to it.

If you're interested in learning more about setting up Virtual Environments, I encourage you to read a few blogs on the topic. A personal recommendation would be

📝 Dependencies

Refer to the Poetry Lock file located at poetry.lock for detailed descriptions on each package installed.

⚙️ How it works

Let's take a second to do a nice John Madden play-by-play by visiting the documentation in the files/docs/ directory.

Name Description
pb.jsnapy.ospf.rst Validate OSPF neighbors with JSNAPY

〰️ Just an FYI for Ansible AWX / Tower users

You'll note that there is an ansible.cfg file found in the root of the project's directory, as well as a folder roles/ to host the requirements.yml file.

The only purpose these serve is for Ansible Tower, which will look for these files when the project syncs from Gitlab/Github/Whatever, and Tower will auto-install the packages.

The ansible.cfg file will be the definitive for each Playbook (Template) execution, so super important to keep it here.

📸 Screenshot

pb.configure.yaml

Owner
Calvin Remsburg
Calvin Remsburg
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022