Model that predicts the probability of a Twitter user being anti-vaccination.

Overview
<style>body {text-align: justify}</style>

AVAXTAR: Anti-VAXx Tweet AnalyzeR

AVAXTAR is a python package to identify anti-vaccine users on twitter. The model outputs complimentary probabilities for [not anti-vaccine, anti-vaccine]. AVAXTAR was trained on 100GB of autolabeled twitter data.

The model supports both Twitter API v1 and v2. To predict with v1, the user needs its consumer key, consumer secret, access token and access secret. The v2 requires only a bearer token, but it can only predict based on user id, not on screen name. Predicting from the v2 api using screen name is only possible if v1 keys are passed to the model.

The methodology behind the package is described in full at {placeholder}

Citation

To cite this paper, please use: {placeholder}

Installation

Attention: this package relies on a pre-trained embedding model from sent2vec, with a size of 5 GB. The model will be automatically downloaded when the package is first instanced on a python script, and will then be saved on the package directory for future usage.

  1. Clone this repo:
git clone https://github.com/Matheus-Schmitz/avaxtar.git
  1. Go to the repo's root:
cd avaxtar/
  1. Install with pip:
pip install .

Usage Example

For prediction, use:

model.predict_from_userid_api_v1(userid)

and:

model.predict_from_userid_api_v2(userid)

For example:

from avaxtar import Avaxtar

consumer_key = ''
consumer_secret = ''
access_token = ''
access_secret = ''
bearer_token = ''


if __name__ == "__main__":

	# Get the userid
	userid = ''

	# Predict
	model = Avaxtar.AvaxModel(consumer_key, consumer_secret, access_token, access_secret, bearer_token)
	pred_proba = model.predict_from_userid_api_v1(userid)

	# Results
	print(f'User: {userid}')
	print(f'Class Probabilities: {pred_proba}')

Package Details

The AVAXTAR classifier is trained on a comprehensive labeled dataset that contains historical tweets of approximately 130K Twitter accounts. Each account from the dataset was assigned one out of two labels: positive for the accounts that actively spread anti-vaccination narrative \~70K and negative for the accounts that do not spread anti vaccination narrative \~60K.

Collecting positive samples: Positive samples are gathered through a snowball method to identify a set of hashtags and keywords associated with the anti-vaccination movement, and then queried the Twitter API and collected the historical tweets of accounts that used any of the identified keywords.

Collecting negative samples: To collect the negative samples, we first performed a mirror approach the positive samples and queried the Twitter API to get historical tweets of accounts that do not use any of the predefined keywords and hashtags. We then enlarge the number of negative samples, by gathering the tweets from accounts that are likely proponents of the vaccination. We identify the pro-ponents of the vaccines in the following way: First, we identify the set of twenty most prominent doctors and health experts active on Twitter. Then collected the covid-related Lists those health experts made on Twitter. From those lists, we collected approximately one thousand Twitter handles of prominent experts and doctors who tweet about the coronavirus and the pandemic. In the next step, we go through their latest 200 tweets and collected the Twitter handles of users who retweeted their tweets. That became our pool of pro-vaccine users. Finally, we collected the historical tweets of users from the pro-vaccine pool.

After model training, we identify the optimal classification threshold to be used, based on maximizing F1 score on the validation set. We find that a threshold of 0.5938 results in the best F1 Score, and thus recommend the usage of that threshold instead of the default threshold of 0.5. Using the optimized threshold, the resulting modelwas then evaluated on a test set of users, achieving the reasonable scores, as shown in the table below.

Metric Negative Class Positive Class
Accuracy 0.8680 0.8680
ROC-AUC 0.9270 0.9270
PRC-AUC 0.8427 0.9677
Precision 0.8675 0.8675
Recall 0.8680 0.8680
F1 0.8677 0.8678
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023