Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Overview

Anchor-Based Spatial-Temporal Attention Model for Dynamic 3D Point Cloud Sequences

Created by Guangming Wang, Hanwen Liu, Muyao Chen, Yehui Yang, Zhe Liu and Hesheng Wang from ShangHai Jiao Tong University.

[arXiv]

Citation

If you find this work useful in your research, please cite:

@article{wang2021anchor,
title={Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences},
author={Wang, Guangming and Liu, Hanwen and Chen, Muyao and Yang, Yehui and Liu, Zhe and Wang, Hesheng},
journal={IEEE Transactions on Instrumentation and Measurement},
volume={70},
pages={1--11},
year={2021},
publisher={IEEE}
}

Abstract

With the rapid development of measurement technology, LiDAR and depth cameras are widely used in the perception of the 3D environment. Recent learning based methods for robot perception most focus on the image or video, but deep learning methods for dynamic 3D point cloud sequences are underexplored. Therefore, developing efficient and accurate perception method compatible with these advanced instruments is pivotal to autonomous driving and service robots. An Anchor-based Spatio-Temporal Attention 3D Convolution operation (ASTA3DConv) is proposed in this paper to process dynamic 3D point cloud sequences. The proposed convolution operation builds a regular receptive field around each point by setting several virtual anchors around each point. The features of neighborhood points are firstly aggregated to each anchor based on the spatio-temporal attention mechanism. Then, anchor-based 3D convolution is adopted to aggregate these anchors' features to the core points. The proposed method makes better use of the structured information within the local region and learns spatio-temporal embedding features from dynamic 3D point cloud sequences. Anchor-based Spatio-Temporal Attention 3D Convolutional Neural Networks (ASTA3DCNNs) are built for classification and segmentation tasks based on the proposed ASTA3DConv and evaluated on action recognition and semantic segmentation tasks. The experiments and ablation studies on MSRAction3D and Synthia datasets demonstrate the superior performance and effectiveness of our method for dynamic 3D point cloud sequences. Our method achieves the state-of-the-art performance among the methods with dynamic 3D point cloud sequences as input on MSRAction3D and Synthia datasets.

Installation

Install TensorFlow. The code is tested under TF1.9.0 GPU version, g++ 5.4.0, CUDA 9.0 and Python 3.5 on Ubuntu 16.04. There are also some dependencies for a few Python libraries for data processing and visualizations like cv2. It's highly recommended that you have access to GPUs.

Compile Customized TF Operators

The TF operators are included under tf_ops, you have to compile them first by make under each ops subfolder (check Makefile). Update arch in the Makefiles for different CUDA Compute Capability that suits your GPU if necessary.

Action Classification Experiments on MSRAction3D

The code for action classification experiments on MSRAction3D dataset is in action/. Check action_cls/README.md for more information on data preprocessing and experiments.

Semantic Segmentation Experiments on Synthia

The code for semantic segmentation experiments on Synthia dataset is in semantic/. Check semantic/semantic_seg_synthia/README.md for more information on data preprocessing and experiments.

Acknowlegements

We are grateful to Xingyu Liu for his github repository. Our code is based on theirs.

Owner
Intelligent Robotics and Machine Vision Lab
Intelligent Robotics and Machine Vision Lab at Shanghai Jiao Tong University
Intelligent Robotics and Machine Vision Lab
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022