IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

Overview

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具

2022.2.8 添加、修改内容

增加备份文件fuzz规则

修改备份文件大小判断方式(pip3 install hurry-filesize)

修改备份文件是否存在的判断规则

修改为多线程扫描,内存占用更小

经测试 1h1g vps 500线程可以拉满

python3 ihoneyBakFileScan_Modify.py -t 500 -f url.txt

python3 requests pip3.5

1. 简介

1.1 网站备份文件泄露可能造成的危害:
1. 网站存在备份文件:网站存在备份文件,例如数据库备份文件、网站源码备份文件等,攻击者利用该信息可以更容易得到网站权限,导致网站被黑。
2. 敏感文件泄露是高危漏洞之一,敏感文件包括数据库配置信息,网站后台路径,物理路径泄露等,此漏洞可以帮助攻击者进一步攻击,敞开系统的大门。
3. 由于目标备份文件较大(xxx.G),可能存在更多敏感数据泄露
4. 该备份文件被下载后,可以被用来做代码审计,进而造成更大的危害
5. 该信息泄露会暴露服务器的敏感信息,使攻击者能够通过泄露的信息进行进一步入侵。
1.2 依赖环境
开发环境:
python3   python3.5.3
pip3.5    pip 10.0.1
requests  2.19.1
安装第三方依赖库:
pip3.5 install requests
pip3 install hurry-filesize
1.3 工具核心:
1. 常见后缀:
   * '.rar', '.zip', '.gz', '.sql.gz', '.tar.gz' ...
2. 文件头识别:
   * rar:526172211a0700cf9073
   * zip:504b0304140000000800
   * gz:1f8b080000000000000b,也包括'.sql.gz',取'1f8b0800' 作为keyword
   * tar.gz: 1f8b0800
   * sql:每种导出方式有不同的文件头
       * Adminer:  
       * mysqldump:     
       * phpMyAdmin:
       * navicat:   
3. 数据库备份导出方式识别:
   * 导出方式                      文件头字符:                    前10个16进制字符:
   * mysqldump:                   -- MySQL dump:               2d2d204d7953514c
   * phpMyAdmin:                  -- phpMyAdmin SQL Dump:      2d2d207068704d794164
   * navicat:                     /* Navicat :                 2f2a0a204e617669636174
   * Adminer:                     -- Adminer x.x.x MySQL dump: 2d2d2041646d696e6572  (5月9日新增xxx.sql)
   * Navicat MySQL Data Transfer: /* Navicat:                  2f2a0a4e617669636174
   * 一种未知导出方式:               -- -------:                  2d2d202d2d2d2d2d2d2d
4. 根据域名自动生成相关扫描字典:
    ➜  ihoneyBakFileScan python3.5 ihoneyBakFileScan.py -u https://www.ihoney.net.cn
    [ ] https://www.ihoney.net.cn/__zep__/js.zip
    [ ] https://www.ihoney.net.cn/faisunzip.zip
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.rar
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.rar
    [ ] https://www.ihoney.net.cn/ihoneynetcn.rar
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.rar
    [ ] https://www.ihoney.net.cn/www.rar
    [ ] https://www.ihoney.net.cn/ihoney.rar
    [*] https://www.ihoney.net.cn/www.ihoney.net.cn.zip  size:0M
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.zip
    [ ] https://www.ihoney.net.cn/ihoneynetcn.zip
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.zip
    [ ] https://www.ihoney.net.cn/www.zip
    [ ] https://www.ihoney.net.cn/ihoney.zip
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.gz
    [ ] https://www.ihoney.net.cn/www.gz
    [ ] https://www.ihoney.net.cn/ihoney.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.sql.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.sql.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.sql.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.sql.gz
    [ ] https://www.ihoney.net.cn/www.sql.gz
    [ ] https://www.ihoney.net.cn/ihoney.sql.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.tar.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.tar.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.tar.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.tar.gz
    [ ] https://www.ihoney.net.cn/www.tar.gz
    [ ] https://www.ihoney.net.cn/ihoney.tar.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.sql
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.sql
    [ ] https://www.ihoney.net.cn/ihoneynetcn.sql
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.sql
    [ ] https://www.ihoney.net.cn/www.sql
    [ ] https://www.ihoney.net.cn/ihoney.sql
5. 自动记录扫描成功的备份地址到以时间命名的文件
    例如 20180616_16-28-14.txt:
    https://www.ihoney.net.cn/ihoney.tar.gz  size:0M
    https://www.ihoney.net.cn/www.ihoney.net.cn.zip  size:0M

2. 使用方式

参数:
    -h --help      查看工具使用帮助
    -f --url-file  批量时指定存放url的文件,每行url需要指定http://或者https://,否则默认使用http://
    -t --thread    指定线程数,建议100
    -u --url       单个url扫描时指定url
    -d --dict-file 自定义扫描字典
使用:
    批量url扫描    python3.5 ihoneyBakFileScan.py -t 100 -f url.txt
    单个url扫描    python3.5 ihoneyBakFileScan.py -u https://www.ihoneysec.top/
                  python3.5 ihoneyBakFileScan.py -u www.ihoney.net.cn
                  python3.5 ihoneyBakFileScan.py -u www.ihoney.net.cn -d dict.txt

3. ChangeLog:

[2018.04.20]  首发T00ls:支持rar,zip后缀备份文件头识别,根据域名自动生成相关扫描字典,自动记录扫描成功的备份地址到文件
[2018.04.26]
              在原本扫描成功的备份地址后增加了备份大小,以方便快速识别有效备份。
              增加了.sql文件识别,也是识别文件头的方式,文件头我目前检测到三种,分别是不同方式导出的:1.mysql,2.phpmyadmin,3.navicat。
[2018.05.19]  新增识别Adminer导出的两种格式:baidu.sql、baodu.sql.gz
[2018.05.31]  新增Navicat MySQL Data Transfer备份导出方式和另一种未知导出方式
[2018.06.16]  修复支持https站扫描,并从旧项目中抽出来独立作为一个项目
[2018.06.18]  从多线程加队列改为多进程加进程池,提升扫描速度

4. 联系

* 在使用工具的过程中遇到任何异常、问题,或者你有更好的建议都可以联系作者,一起将这款不出名的小工具完善下去。
* 联系方式: QQ 102505481
2018年06月18日22:51:11
Owner
VMsec
专注渗透测试。
VMsec
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022