Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

Related tags

Deep Learningxlm-t
Overview

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter.

XLM-T - A Multilingual Language Model Toolkit for Twitter

As explained in the reference paper, we make start from XLM-Roberta base and continue pre-training on a large corpus of Twitter in multiple languages. This masked language model, which we named twitter-xlm-roberta-base in the 🤗 Huggingface hub, can be downloaded from here.

Note: This Twitter-specific pretrained LM was pretrained following a similar strategy to its English-only counterpart, which was introduced as part of the TweetEval framework, and available here.

We also provide task-specific models based on the Adapter technique, fine-tuned for cross-lingual sentiment analysis (See #2):

1 - Code

We include code with various functionalities to complement this release. We provide examples for, among others, feature extraction and adapter-based inference with language models in this notebook. Also with examples for training and evaluating language models on multiple tweet classification tasks, compatible with UMSAB (see #2) and TweetEval datasets.

Perform inference with Huggingface's pipelines

Using Huggingface's pipelines, obtaining predictions is as easy as:

from transformers import pipeline
model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Huggingface es lo mejor! Awesome library 🤗😎")
[{'label': 'Positive', 'score': 0.9343640804290771}]

Fine-tune xlm-t with adapters

You can fine-tune an adapter built on top of your language model of choice by running the src/adapter_finetuning.py script, for example:

python3 src/adapter_finetuning.py --language spanish --model cardfiffnlp/twitter-xlm-roberta-base --seed 1 --lr 0.0001 --max_epochs 20

Notebooks

For quick prototyping, you can direclty use the Colab notebooks we provide below:

Notebook Description Colab Link
01: Playgroud examples Minimal start examples Open In Colab
02: Extract embeddings Extract embeddings from tweets Open In Colab
03: Sentiment prediction Predict sentiment Open In Colab
04: Fine-tuning Fine-tune a model on custom data Open In Colab

2 - UMSAB, the Unified Multilingual Sentiment Analysis Benchmark

As part of our framework, we also release a unified benchmark for cross-lingual sentiment analysis for eight different languages. All datasets are framed as tweet classification with three labels (positive, negative and neutral). The languages included in the benchmark, as well as the datasets they are based on, are: Arabic (SemEval-2017, Rosenthal et al. 2017), English (SemEval-17, Rosenthal et al. 2017), French (Deft-2017, Benamara et al. 2017), German (SB-10K, Cieliebak et al. 2017), Hindi (SAIL 2015, Patra et al. 2015), Italian (Sentipolc-2016, Barbieri et al. 2016), Portuguese (SentiBR, Brum and Nunes, 2017) and Spanish (Intertass 2017, Díaz Galiano et al. 2018). The format for each dataset follows that of TweetEval with one line per tweet and label per line.

UMSAB Results / Leaderboard

The following results (Macro F1 reported) correspond to XLM-R (Conneau et al. 2020) and XLM-Tw, the same model retrained on Twitter as explained in the reference paper. The two settings are monolingual (trained and tested in the same language) and multilingual (considering all languages for training). Check the reference paper for more details on the setting and the metrics.

FT Mono XLM-R Mono XLM-Tw Mono XLM-R Multi XLM-Tw Multi
Arabic 46.0 63.6 67.7 64.3 66.9
English 50.9 68.2 66.9 68.5 70.6
French 54.8 72.0 68.2 70.5 71.2
German 59.6 73.6 76.1 72.8 77.3
Hindi 37.1 36.6 40.3 53.4 56.4
Italian 54.7 71.5 70.9 68.6 69.1
Portuguese 55.1 67.1 76.0 69.8 75.4
Spanish 50.1 65.9 68.5 66.0 67.9
All lang. 51.0 64.8 66.8 66.8 69.4

If you would like to have your results added to the leaderboard you can either submit a pull request or send an email to any of the paper authors with results and the predictions of your model. Please also submit a reference to a paper describing your approach.

Evaluating your system

For evaluating your system according to Macro-F1, you simply need an individual prediction file for each of the languages. The format of the predictions file should be the same as the output examples in the predictions folder (one output label per line as per the original test file) and the files should be named language.txt (e.g. arabic.txt or all.txt if evaluating all languages at once). The predictions included as an example in this repo correspond to xlm-t trained and evaluated on all languages (All lang.).

Example usage

python src/evaluation_script.py

The script takes as input a set of test labels and the predictions from the "predictions" folder by default, but you can set this to suit your needs as optional arguments.

Optional arguments

Three optional arguments can be modified:

--gold_path: Path to gold datasets. Default: ./data/sentiment

--predictions_path: Path to predictions directory. Default: ./predictions/sentiment

--language: Language to evaluate (arabic, english ... or all). Default: all

Evaluation script sample usage from the terminal with parameters:

python src/evaluation_script.py --gold_path ./data/sentiment --predictions_path ./predictions/sentiment --language arabic

(this script would output the results for the Arabic dataset only)

Reference paper

If you use this repository in your research, please use the following bib entry to cite the reference paper.

@inproceedings{barbieri2021xlmtwitter,
  title={{A Multilingual Language Model Toolkit for Twitter}},
  author={Barbieri, Francesco and Espinosa-Anke, Luis and Camacho-Collados, Jose},
  booktitle={arXiv preprint arXiv:2104.12250},
  year={2021}
}

If using UMSAB, please also cite their corresponding datasets.

License

This repository is released open-source but but restrictions may apply to individual datasets (which are derived from existing data) or Twitter (main data source). We refer users to the original licenses accompanying each dataset and Twitter regulations.

Owner
Cardiff NLP
Cardiff NLP
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021