Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Overview

Deep Networks from the Principle of Rate Reduction

This repository is the official NumPy implementation of the paper Deep Networks from the Principle of Rate Reduction (2021) by Kwan Ho Ryan Chan* (UC Berkeley), Yaodong Yu* (UC Berkeley), Chong You* (UC Berkeley), Haozhi Qi (UC Berkeley), John Wright (Columbia), and Yi Ma (UC Berkeley). For PyTorch version of ReduNet, please visit https://github.com/ryanchankh/redunet.

What is ReduNet?

ReduNet is a deep neural network construcuted naturally by deriving the gradients of the Maximal Coding Rate Reduction (MCR2) [1] objective. Every layer of this network can be interpreted based on its mathematical operations and the network collectively is trained in a feed-forward manner only. In addition, by imposing shift invariant properties to our network, the convolutional operator can be derived using only the data and MCR2 objective function, hence making our network design principled and interpretable.


Figure: Weights and operations for one layer of ReduNet

[1] Yu, Yaodong, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. "Learning diverse and discriminative representations via the principle of maximal coding rate reduction" Advances in Neural Information Processing Systems 33 (2020).

Requirements

This codebase is written for python3. To install necessary python packages, run conda create --name redunet_official --file requirements.txt.

File Structure

Training

To train a model, one can run the training files, which has the dataset as thier names. For the appropriate commands to reproduce our experimental results, check out the experiment section below. All the files for training is listed below:

  • gaussian2d.py: mixture of Guassians in 2-dimensional Reals
  • gaussian3d.py: mixture of Guassians in 3-dimensional Reals
  • iris.py: Iris dataset from UCI Machine Learning Repository (link)
  • mice.py: Mice Protein Expression Data Set (link)
  • mnist1d.py: MNIST dataset, each image is multi-channel polar form and model is trained to have rotational invariance
  • mnist2d.py: MNIST dataset, each image is single-channel and model is trained to have translational invariance
  • sinusoid.py: mixture of sinusoidal waves, single and multichannel data

Evaluation and Ploting

Evaluation and plots are performed within each file. Functions are located in evaluate.py and plot.py.

Experiments

Run the following commands to train, test, evaluate and plot figures for different settings:

Main Paper

Gaussian 2D: Figure 2(a) - (c)

$ python3 gaussian2d.py --data 1 --noise 0.1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Gaussian 3D: Figure 2(d) - (f)

$ python3 gaussian3d.py --data 1 --noise 0.1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Rotational-Invariant MNIST: 3(a) - (d)

$ python3 mnist1d.py --samples 10 --channels 15 --outchannels 20 --time 200 --classes 0 1 2 3 4 5 6 7 8 9 --layers 40 --eta 0.5 --eps 0.1  --ksize 5

Translational-Invariant MNIST: 3(e) - (h)

$ python3 mnist2d.py --classes 0 1 2 3 4 5 6 7 8 9 --samples 10 --layers 25 --outchannels 75 --ksize 9 --eps 0.1 --eta 0.5

Appendix

For Iris and Mice Protein:

$ python3 iris.py --layers 4000 --eta 0.1 --eps 0.1
$ python3 mice.py --layers 4000 --eta 0.1 --eps 0.1

For 1D signals (Sinusoids):

$ python3 sinusoid.py --time 150 --samples 400 --channels 7 --layers 2000 --eps 0.1 --eta 0.1 --data 7 --kernel 3

For 1D signals (Rotational Invariant MNIST):

$ python3 mnist1d.py --classes 0 1 --samples 2000 --time 200 --channels 5 --layers 3500 --eta 0.5 --eps 0.1

For 2D translational invariant MNIST data:

$ python3 mnist2d.py --classes 0 1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Reference

For technical details and full experimental results, please check the paper. Please consider citing our work if you find it helpful to yours:

@article{chan2020deep,
  title={Deep networks from the principle of rate reduction},
  author={Chan, Kwan Ho Ryan and Yu, Yaodong and You, Chong and Qi, Haozhi and Wright, John and Ma, Yi},
  journal={arXiv preprint arXiv:2010.14765},
  year={2020}
}

License and Contributing

  • This README is formatted based on paperswithcode.
  • Feel free to post issues via Github.

Contact

Please contact [email protected] and [email protected] if you have any question on the codes.

Owner
Ryan Chan
Interested in developing principled deep learning algorithms
Ryan Chan
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022