Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Overview

Deep Networks from the Principle of Rate Reduction

This repository is the official NumPy implementation of the paper Deep Networks from the Principle of Rate Reduction (2021) by Kwan Ho Ryan Chan* (UC Berkeley), Yaodong Yu* (UC Berkeley), Chong You* (UC Berkeley), Haozhi Qi (UC Berkeley), John Wright (Columbia), and Yi Ma (UC Berkeley). For PyTorch version of ReduNet, please visit https://github.com/ryanchankh/redunet.

What is ReduNet?

ReduNet is a deep neural network construcuted naturally by deriving the gradients of the Maximal Coding Rate Reduction (MCR2) [1] objective. Every layer of this network can be interpreted based on its mathematical operations and the network collectively is trained in a feed-forward manner only. In addition, by imposing shift invariant properties to our network, the convolutional operator can be derived using only the data and MCR2 objective function, hence making our network design principled and interpretable.


Figure: Weights and operations for one layer of ReduNet

[1] Yu, Yaodong, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. "Learning diverse and discriminative representations via the principle of maximal coding rate reduction" Advances in Neural Information Processing Systems 33 (2020).

Requirements

This codebase is written for python3. To install necessary python packages, run conda create --name redunet_official --file requirements.txt.

File Structure

Training

To train a model, one can run the training files, which has the dataset as thier names. For the appropriate commands to reproduce our experimental results, check out the experiment section below. All the files for training is listed below:

  • gaussian2d.py: mixture of Guassians in 2-dimensional Reals
  • gaussian3d.py: mixture of Guassians in 3-dimensional Reals
  • iris.py: Iris dataset from UCI Machine Learning Repository (link)
  • mice.py: Mice Protein Expression Data Set (link)
  • mnist1d.py: MNIST dataset, each image is multi-channel polar form and model is trained to have rotational invariance
  • mnist2d.py: MNIST dataset, each image is single-channel and model is trained to have translational invariance
  • sinusoid.py: mixture of sinusoidal waves, single and multichannel data

Evaluation and Ploting

Evaluation and plots are performed within each file. Functions are located in evaluate.py and plot.py.

Experiments

Run the following commands to train, test, evaluate and plot figures for different settings:

Main Paper

Gaussian 2D: Figure 2(a) - (c)

$ python3 gaussian2d.py --data 1 --noise 0.1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Gaussian 3D: Figure 2(d) - (f)

$ python3 gaussian3d.py --data 1 --noise 0.1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Rotational-Invariant MNIST: 3(a) - (d)

$ python3 mnist1d.py --samples 10 --channels 15 --outchannels 20 --time 200 --classes 0 1 2 3 4 5 6 7 8 9 --layers 40 --eta 0.5 --eps 0.1  --ksize 5

Translational-Invariant MNIST: 3(e) - (h)

$ python3 mnist2d.py --classes 0 1 2 3 4 5 6 7 8 9 --samples 10 --layers 25 --outchannels 75 --ksize 9 --eps 0.1 --eta 0.5

Appendix

For Iris and Mice Protein:

$ python3 iris.py --layers 4000 --eta 0.1 --eps 0.1
$ python3 mice.py --layers 4000 --eta 0.1 --eps 0.1

For 1D signals (Sinusoids):

$ python3 sinusoid.py --time 150 --samples 400 --channels 7 --layers 2000 --eps 0.1 --eta 0.1 --data 7 --kernel 3

For 1D signals (Rotational Invariant MNIST):

$ python3 mnist1d.py --classes 0 1 --samples 2000 --time 200 --channels 5 --layers 3500 --eta 0.5 --eps 0.1

For 2D translational invariant MNIST data:

$ python3 mnist2d.py --classes 0 1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Reference

For technical details and full experimental results, please check the paper. Please consider citing our work if you find it helpful to yours:

@article{chan2020deep,
  title={Deep networks from the principle of rate reduction},
  author={Chan, Kwan Ho Ryan and Yu, Yaodong and You, Chong and Qi, Haozhi and Wright, John and Ma, Yi},
  journal={arXiv preprint arXiv:2010.14765},
  year={2020}
}

License and Contributing

  • This README is formatted based on paperswithcode.
  • Feel free to post issues via Github.

Contact

Please contact [email protected] and [email protected] if you have any question on the codes.

Owner
Ryan Chan
Interested in developing principled deep learning algorithms
Ryan Chan
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023