[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Related tags

Deep LearningPTF
Overview

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

This repository contains the implementation of our paper Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration . The code is largely based on Occupancy Networks - Learning 3D Reconstruction in Function Space.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code useful, please consider citing:

@InProceedings{PTF:CVPR:2021,
    author = {Shaofei Wang and Andreas Geiger and Siyu Tang},
    title = {Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration},
    booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021}
}

Installation

This repository has been tested on the following platforms:

  1. Python 3.7, PyTorch 1.6 with CUDA 10.2 and cuDNN 7.6.5, Ubuntu 20.04
  2. Python 3.7, PyTorch 1.6 with CUDA 10.1 and cuDNN 7.6.4, CentOS 7.9.2009

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called PTF using

conda env create -n PTF python=3.7
conda activate PTF

Second, install PyTorch 1.6 via the official PyTorch website.

Third, install dependencies via

pip install -r requirements.txt

Fourth, manually install pytorch-scatter.

Lastly, compile the extension modules. You can do this via

python setup.py build_ext --inplace

(Optional) if you want to use the registration code under smpl_registration/, you need to install kaolin. Download the code from the kaolin repository, checkout to commit e7e513173bd4159ae45be6b3e156a3ad156a3eb9 and install it according to the instructions.

(Optional) if you want to train/evaluate single-view models (which corresponds to configurations in configs/cape_sv), you need to install OpenDR to render depth images. You need to first install OSMesa, here is the command of installing it on Ubuntu:

sudo apt-get install libglu1-mesa-dev freeglut3-dev mesa-common-dev libosmesa6-dev

For installing OSMesa on CentOS 7, please check this related issue. After installing OSMesa, install OpenDR via:

pip install opendr

Build the dataset

To prepare the dataset for training/evaluation, you have to first download the CAPE dataset from the CAPE website.

  1. Download SMPL v1.0, clean-up the chumpy objects inside the models using this code, and rename the files and extract them to ./body_models/smpl/, eventually, the ./body_models folder should have the following structure:
    body_models
     └-- smpl
     	├-- male
     	|   └-- model.pkl
     	└-- female
     	    └-- model.pkl
    
    

Besides the SMPL models, you will also need to download all the .pkl files from IP-Net repository and put them under ./body_models/misc/. Finally, run the following script to extract necessary SMPL parameters used in our code:

python extract_smpl_parameters.py

The extracted SMPL parameters will be save into ./body_models/misc/.

  1. Extract CAPE dataset to an arbitrary path, denoted as ${CAPE_ROOT}. The extracted dataset should have the following structure:
    ${CAPE_ROOT}
     ├-- 00032
     ├-- 00096
     |   ...
     ├-- 03394
     └-- cape_release
    
    
  2. Create data directory under the project directory.
  3. Modify the parameters in preprocess/build_dataset.sh accordingly (i.e. modify the --dataset_path to ${CAPE_ROOT}) to extract training/evaluation data.
  4. Run preprocess/build_dataset.sh to preprocess the CAPE dataset.

Pre-trained models

We provide pre-trained PTF and IP-Net models with two encoder resolutions, that is, 64x3 and 128x3. After downloading them, please put them under respective directories ./out/cape or ./out/cape_sv.

Generating Meshes

To generate all evaluation meshes using a trained model, use

python generate.py configs/cape/{config}.yaml

Alternatively, if you want to parallelize the generation on a HPC cluster, use:

python generate.py --subject-idx ${SUBJECT_IDX} --sequence-idx ${SEQUENCE_IDX} configs/cape/${config}.yaml

to generate meshes for specified subject/sequence combination. A list of all subject/sequence combinations can be found in ./misc/subject_sequence.txt.

SMPL/SMPL+D Registration

To register SMPL/SMPL+D models to the generated meshes, use either of the following:

python smpl_registration/fit_SMPLD_PTFs.py --num-joints 24 --use-parts --init-pose configs/cape/${config}.yaml # for PTF
python smpl_registration/fit_SMPLD_PTFs.py --num-joints 14 --use-parts configs/cape/${config}.yaml # for IP-Net

Note that registration is very slow, taking roughly 1-2 minutes per frame. If you have access to HPC cluster, it is advised to parallelize over subject/sequence combinations using the same subject/sequence input arguments for generating meshes.

Training

Finally, to train a new network from scratch, run

python train.py --num_workers 8 configs/cape/${config}.yaml

You can monitor on http://localhost:6006 the training process using tensorboard:

tensorboard --logdir ${OUTPUT_DIR}/logs --port 6006

where you replace ${OUTPUT_DIR} with the respective output directory.

License

We employ MIT License for the PTF code, which covers

extract_smpl_parameters.py
generate.py
train.py
setup.py
im2mesh/
preprocess/

Modules not covered by our license are modified versions from IP-Net (./smpl_registration) and SMPL-X (./human_body_prior); for these parts, please consult their respective licenses and cite the respective papers.

Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022