A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

Overview

University1652-Baseline

Python 3.6 Language grade: Python Total alerts License: MIT

VideoDemo

[Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍]

This repository contains the dataset link and the code for our paper University-1652: A Multi-view Multi-source Benchmark for Drone-based Geo-localization, ACM Multimedia 2020. The offical paper link is at https://dl.acm.org/doi/10.1145/3394171.3413896. We collect 1652 buildings of 72 universities around the world. Thank you for your kindly attention.

Task 1: Drone-view target localization. (Drone -> Satellite) Given one drone-view image or video, the task aims to find the most similar satellite-view image to localize the target building in the satellite view.

Task 2: Drone navigation. (Satellite -> Drone) Given one satellite-view image, the drone intends to find the most relevant place (drone-view images) that it has passed by. According to its flight history, the drone could be navigated back to the target place.

Table of contents

About Dataset

The dataset split is as follows:

Split #imgs #buildings #universities
Training 50,218 701 33
Query_drone 37,855 701 39
Query_satellite 701 701 39
Query_ground 2,579 701 39
Gallery_drone 51,355 951 39
Gallery_satellite 951 951 39
Gallery_ground 2,921 793 39

More detailed file structure:

├── University-1652/
│   ├── readme.txt
│   ├── train/
│       ├── drone/                   /* drone-view training images 
│           ├── 0001
|           ├── 0002
|           ...
│       ├── street/                  /* street-view training images 
│       ├── satellite/               /* satellite-view training images       
│       ├── google/                  /* noisy street-view training images (collected from Google Image)
│   ├── test/
│       ├── query_drone/  
│       ├── gallery_drone/  
│       ├── query_street/  
│       ├── gallery_street/ 
│       ├── query_satellite/  
│       ├── gallery_satellite/ 
│       ├── 4K_drone/

We note that there are no overlaps between 33 univeristies of training set and 39 univeristies of test set.

News

1 Dec 2021 Fix the issue due to the latest torchvision, which do not allow the empty subfolder. Note that some buildings do not have google images.

3 March 2021 GeM Pooling is added. You may use it by --pool gem.

21 January 2021 The GPU-Re-Ranking, a GNN-based real-time post-processing code, is at Here.

21 August 2020 The transfer learning code for Oxford and Paris is at Here.

27 July 2020 The meta data of 1652 buildings, such as latitude and longitude, are now available at Google Driver. (You could use Google Earth Pro to open the kml file or use vim to check the value).
We also provide the spiral flight tour file at Google Driver. (You could open the kml file via Google Earth Pro to enable the flight camera).

26 July 2020 The paper is accepted by ACM Multimedia 2020.

12 July 2020 I made the baseline of triplet loss (with soft margin) on University-1652 public available at Here.

12 March 2020 I add the state-of-the-art page for geo-localization and tutorial, which will be updated soon.

Code Features

Now we have supported:

  • Float16 to save GPU memory based on apex
  • Multiple Query Evaluation
  • Re-Ranking
  • Random Erasing
  • ResNet/VGG-16
  • Visualize Training Curves
  • Visualize Ranking Result
  • Linear Warm-up

Prerequisites

  • Python 3.6
  • GPU Memory >= 8G
  • Numpy > 1.12.1
  • Pytorch 0.3+
  • [Optional] apex (for float16)

Getting started

Installation

git clone https://github.com/pytorch/vision
cd vision
python setup.py install
  • [Optinal] You may skip it. Install apex from the source
git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext

Dataset & Preparation

Download [University-1652] upon request. You may use the request template.

Or download CVUSA / CVACT.

For CVUSA, I follow the training/test split in (https://github.com/Liumouliu/OriCNN).

Train & Evaluation

Train & Evaluation University-1652

python train.py --name three_view_long_share_d0.75_256_s1_google  --extra --views 3  --droprate 0.75  --share  --stride 1 --h 256  --w 256 --fp16; 
python test.py --name three_view_long_share_d0.75_256_s1_google

Default setting: Drone -> Satellite If you want to try other evaluation setting, you may change these lines at: https://github.com/layumi/University1652-Baseline/blob/master/test.py#L217-L225

Ablation Study only Satellite & Drone

python train_no_street.py --name two_view_long_no_street_share_d0.75_256_s1  --share --views 3  --droprate 0.75  --stride 1 --h 256  --w 256  --fp16; 
python test.py --name two_view_long_no_street_share_d0.75_256_s1

Set three views but set the weight of loss on street images to zero.

Train & Evaluation CVUSA

python prepare_cvusa.py
python train_cvusa.py --name usa_vgg_noshare_warm5_lr2 --warm 5 --lr 0.02 --use_vgg16 --h 256 --w 256  --fp16 --batchsize 16;
python test_cvusa.py  --name usa_vgg_noshare_warm5_lr2 

Trained Model

You could download the trained model at GoogleDrive or OneDrive. After download, please put model folders under ./model/.

Citation

The following paper uses and reports the result of the baseline model. You may cite it in your paper.

@article{zheng2020university,
  title={University-1652: A Multi-view Multi-source Benchmark for Drone-based Geo-localization},
  author={Zheng, Zhedong and Wei, Yunchao and Yang, Yi},
  journal={ACM Multimedia},
  year={2020}
}

Instance loss is defined in

@article{zheng2017dual,
  title={Dual-Path Convolutional Image-Text Embeddings with Instance Loss},
  author={Zheng, Zhedong and Zheng, Liang and Garrett, Michael and Yang, Yi and Xu, Mingliang and Shen, Yi-Dong},
  journal={ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)},
  doi={10.1145/3383184},
  volume={16},
  number={2},
  pages={1--23},
  year={2020},
  publisher={ACM New York, NY, USA}
}

Related Work

  • Instance Loss Code
  • Lending Orientation to Neural Networks for Cross-view Geo-localization Code
  • Predicting Ground-Level Scene Layout from Aerial Imagery Code
Comments
  • difficulties in downloading the dataset from Google Drive - Need direct link

    difficulties in downloading the dataset from Google Drive - Need direct link

    Hi, thank you for sharing your dataset. Living in China, it's almost impossible to download your dataset from Google Drive. It's also stop if we try to use a VPN. Can you provide a direct link to download your dataset?

    Thank you

    opened by jpainam 5
  • Results can't be reproduced

    Results can't be reproduced

    Hi @layumi , thanks for releasing the codes.

    When I ran the train.py file (using the resnet model), after initializing with the pretraining model parameters and training for 119 epochs, I ran the test.py file and only got the following results: Rec[email protected]:1.29 [email protected]:4.54 [email protected]:7.43 [email protected]:7.92 AP:2.53

    And when I ran the train.py file using the vgg mode, I got: Recal[email protected]:1.75 [email protected]:6.22 [email protected]:10.36 [email protected]:11.16 AP:3.39

    The hyper-parameters of the above results are set by default. To get the results in the paper, do I need to modify the hyper-parameters in the code?

    I use pytorch 1.1.0 and V100

    opened by Anonymous-so 4
  • How to visualize the retrieved image?

    How to visualize the retrieved image?

    Hello, I've been looking at your code recently. In test.py file, after extracting the features of the image, save result to pytorch__result. mat file, and then run evaluate_ gpu. py file for evaluation. I want to know how to visualize the search results and get the matching results like Figure 5 in the paper.

    opened by zkangkang0 2
  • Question about collecting images

    Question about collecting images

    Hello, First of all, thank you for sharing your great work.

    I'm currently doing researches with cross-view geo-localization and I want to collect image data like the University1652 dataset, so I was wondering if you could share some sample codes, or a simple tutorial about how to collect images using Google Earth Engine.

    Thank you and best regards.

    opened by viet2411 2
  • Testing Drone -> satellite with views=2 is not defined but is default settings

    Testing Drone -> satellite with views=2 is not defined but is default settings

    Hi. I trained using the tutorial readme with this command. python train.py --gpu_ids 0,2 --name ft_ResNet50 --train_all --batchsize 32 --data_dir /home/xx/datasets/University-Release/train And this is the generated yaml

    DA: false
    batchsize: 32
    color_jitter: false
    data_dir: /home/paul/datasets/University-Release/train
    droprate: 0.5
    erasing_p: 0
    extra_Google: false
    fp16: false
    gpu_ids: 0,2
    h: 384
    lr: 0.01
    moving_avg: 1.0
    name: ft_ResNet50
    nclasses: 701
    pad: 10
    pool: avg
    resume: false
    share: false
    stride: 2
    train_all: true
    use_NAS: false
    use_dense: false
    views: 2
    w: 384
    warm_epoch: 0
    

    So, for testing, i do this python test.py --gpu_ids 0 --name ft_ResNet50 --test_dir /home/xx/datasets/University-Release/test --batchsize 32 --which_epoch 119 I found out that, the views=2 and the view_index=3 in the extract_feature function. Using this code

    def which_view(name):
        if 'satellite' in name:
            return 1
        elif 'street' in name:
            return 2
        elif 'drone' in name:
            return 3
        else:
            print('unknown view')
        return -1
    

    The task is 3 -> 1 means Drone -> Satellite with views=2. But the code in the testing, doesn't consider this scenario

     for scale in ms:
        if scale != 1:
           # bicubic is only  available in pytorch>= 1.1
            input_img = nn.functional.interpolate(input_img, scale_factor=scale, mode='bilinear', align_corners=False)
            if opt.views ==2:
               if view_index == 1:
                  outputs, _ = model(input_img, None) 
               elif view_index ==2:
                   _, outputs = model(None, input_img) 
            elif opt.views ==3:
               if view_index == 1:
                  outputs, _, _ = model(input_img, None, None)
               elif view_index ==2:
                    _, outputs, _ = model(None, input_img, None)
                elif view_index ==3:
                        _, _, outputs = model(None, None, input_img)
                    ff += outputs # Give error, since outputs is not defined
    

    For views == 2, there is no views_index == 3

    opened by jpainam 2
  • file naming: Error Path too long

    file naming: Error Path too long

    Hi, I guess on a Unix/Linux system, such error might not occur. But a file naming similar to the Market-1501 dataset could have been better for Windows based systems. Here an error due to the path length in Windows systems. image

    opened by jpainam 1
  • How to use t-SNE ?

    How to use t-SNE ?

    Hi, Dr. Zheng. After reading your paper, I want to use t-SNE code, could you release this t-SNE code? I find lots of t-SNE codes on github, but I can not find useful codes of using resnet network or pretrained models. Thanks a lot !!!!

    opened by starstarb 1
  • About GNN Re-ranking training program

    About GNN Re-ranking training program

    Hello @layumi , thank you for your work

    I was trying to reproduce the result in paper "Understanding Image Retrieval Re-Ranking: A Graph Neural Network Perspective" using your pytorch code, but I'm having some trouble in running the program.

    The program needs "market_88_test.pkl" as input data for re-ranking process, but I don't understand how to generate it properly.

    Could you give some advices on how to use this code?

    Thank you and best regards.

    opened by viet2411 2
Releases(v1.1)
Owner
Zhedong Zheng
Hi, I am a PhD student at University of Technology Sydney. My work focuses on computer vision, especially representation learning.
Zhedong Zheng
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros

Nikos Kolotouros 209 Dec 13, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022