QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Overview

Python package Python application

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The most critical ones manifest as incorrect results when evaluating queries (query bugs). Given the wide applicability of the language, query bugs may have detrimental consequences, for instance, by compromising the soundness of a program analysis that is implemented and formalized in Datalog.

QueryFuzz implements the metamorphic testing approach for Datalog engines described in:

M. N. Mansur, M. Christakis, V. Wüstholz - Metamorphic Testing of Datalog Engines -
In Proceedings of the 29th Joint European Software Engineering Conference and Symposium on 
the Foundations of Software Engineering (ESEC/FSE'21).

Installation:

Ubuntu/Debian:

Support for C++17 is required, which is supported in g++ 7/clang++ 7 on.

sudo apt-get install autoconf automake bison build-essential clang doxygen flex g++ git libffi-dev libncurses5-dev libtool libsqlite3-dev make mcpp python sqlite zlib1g-dev
git clone https://github.com/numairmansur/queryFuzz
virtualenv --python=/usr/bin/python3.7 venv
source venv/bin/activate
cd queryFuzz
python setup.py install

Usage:

Testing Soufflé:

You can immediately start testing Soufflé by just typing the following command:

queryfuzz

When you run this command for the first time, it will download and install Soufflé. We use Soufflé as our backend tool to compare and find discrepancies in the results of two Datalog programs. After successfully installing Soufflé, the above command will start the fuzzing procedure on the latest revision of Soufflé.

If you want to test a different version of Soufflé, please build and install that version and paste the path to Soufflé executable in the path_to_souffle_engine field in file /path/to/queryFuzz/params.json.

Testing µZ:

If you want to run queryFuzz on µZ, please first build and install the appropriate version of z3. Then paste the path to z3 executable in the path_to_z3_engine field in file /path/to/queryFuzz/params.json. You can then begin the fuzzing procedure by running:

queryfuzz --engine=z3

Testing DDlog:

If you want to run queryFuzz on DDlog, please first build and install the appropriate version of DDlog. Then paste the path to DDlog executable in the path_to_ddlog_engine field in file /path/to/queryFuzz/params.json. You would also have to add path to DDlog home directory in the path_to_ddlog_home_dir field in /path/to/queryFuzz/params.json. You can then begin the fuzzing procedure by running:

queryfuzz --engine=ddlog

Want to test your own Datalog engine?

If you want to use QueryFuzz to test your own Datalog engine, please get in touch at [email protected].

Running on multiple cores:

If you wish to run parallel instances of Queryfuzz on n cores, use the --cores flag. For example:

queryfuzz --cores=n

Reproducing query bugs reported in our ESEC/FSE'21 paper:

Please follow the instructions here.

You might also like...
Implements MLP-Mixer: An all-MLP Architecture for Vision.
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

 Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

FastReID is a research platform that implements state-of-the-art re-identification algorithms.
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

This implements one of result networks from Large-scale evolution of image classifiers
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

Releases(fse_repl)
Owner
Maria Christakis' research group at MPI-SWS
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023