This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

Overview

InvariantAncestrySearch

This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search".

Structure of the repository

The repository is structured in the following manner:

  • In the folder /InvariantAncestrySearch there are two important files:
    • utils.py contains a class DataGenerator which we use for sampling SCMs and data from said sampled SCMs. This, can for instance be done by the sequence
    from InvariantAncestrySearch import DataGenerator
    
    SCM1 = DataGenerator(d = 10, N_interventions = 5, p_conn = 2 / 10, InterventionStrength = 1) # This is an SCM generator
    SCM1.SampleDAG()  # Generates a DAG with d = 10 predictor nodes, 5 interventions and roughly d + 1 edges between the (d + 1)-sized subgraph of (X, Y)
    SCM1.BuildCoefMatrix  # Samples coefficients for the linear assignments -- interventions have strength 1
    data1 = SCM1.MakeData(100)  # Generates 100 samples from SCM1
    
    SCM2 = DataGenerator(d = 6, N_interventions = 1, p_conn = 2 / 6, InterventionStrength = 0.5) # And this is also an SCM generator
    SCM2.SampleDAG()  # Generates a DAG with d = 6 predictor nodes, 1 intervention and roughly d + 1 edges between the (d + 1)-sized subgraph of (X, Y)
    SCM2.BuildCoefMatrix  # Samples coefficients for the linear assignments -- interventions have strength 1
    data2 = SCM2.MakeData(1000)  # Generates 1000 samples from SCM2
    
    • IASfunctions.py includes all relevant functions used in the scripts, e.g., to test for minimal invariance or compute the set of all minimally invariant sets. All functions are documentated.
  • In the folder /simulation_scripts there are scripts to reproduce all experiments performed in the paper. These too documentation inside them. The functions run out-of-the-box, if all necessary libraries are installed and do not need to be run in a certain order.
  • In the folder /output/ there are database files, saved from running the scripts in /simulation_scripts/. These contain the data used to make all figures in the paper and can be opened with the python library shelve.
  • The file requirements.txt contains info on which modules are required to run the code. Note also that an R installation is required as well as the R package dagitty
Owner
Phillip Bredahl Mogensen
I'm Phillip Bredahl Mogensen, a Ph.D. student in statistics at the University of Copenhagen
Phillip Bredahl Mogensen
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022