Official code for paper Exemplar Based 3D Portrait Stylization.

Overview

3D-Portrait-Stylization

This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project website.

The entire framework consists of four parts, landmark translation, face reconstruction, face deformation, and texture stylization. Codes (or programs) for the last three parts are ready now, and the first part is still under preparation.

Landmark Translation

Code under preparation. Dataset can be downloaded here.

Face Reconstruction and Deformation

Environment

These two parts require Windows with GPU. They also require a simple Python environment with opencv, imageio and numpy for automatic batch file generation and execution. Python code in the two parts is tested using Pycharm, instead of command lines.

Please download the regressor_large.bin and tensorMale.bin and put them in ./face_recon_deform/PhotoAvatarLib_exe/Data/.

Inputs

These two parts require inputs in the format given below.

Path Description
dirname_data Directory of all inputs
  └  XXX Directory of one input pair
    ├  XXX.jpg Content image
    ├  XXX.txt Landmarks of the content image
    ├  XXX_style.jpg Style image
    ├  XXX_style.txt Landmarks of the style image
    ├  XXX_translated.txt Translated landmarks
  └  YYY Directory of one input pair
    ├  ... ...

Some examples are given in ./data_demo/. As the code for translation has not been provided, you may use The Face of Art to obtain some results for now.

Uasge

Directly run main_recon_deform.py is OK, and you can also check the usage from the code.

In ./face_recon_deform/PhotoAvatarLib_exe/ is a compiled reconstruction program which takes one single image as input, automatically detects the landmarks and fits a 3DMM model towards the detected landmarks. The source code can be downloaded here.

In ./face_recon_deform/LaplacianDeformerConsole/ is a compiled deformation program which deforms a 3D mesh towards a set of 2D/3D landmark targets. You can find the explanation of the parameters by runing LaplacianDeformerConsole.exe without adding options. Please note that it only supports one mesh topology and cannot be used for deforming random meshes. The source code is not able to provide, and some other Laplacian or Laplacian-like deformations can be found in SoftRas and libigl.

Outputs

Please refer to ./face_recon_deform/readme_output.md

Texture Stylization

Environment

The environment for this part is built with CUDA 10.0, python 3.7, and PyTorch 1.2.0, using Conda. Create environment by:

conda create -n YOUR_ENV_NAME python=3.7
conda activate YOUR_ENV_NAME
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
conda install scikit-image tqdm opencv

The code uses neural-renderer, which is already compiled. However, if anything go wrong (perhaps because of the environment difference), you can re-compile it by

python setup.py install
mv build/lib.linux-x86_64-3.7-or-something-similar/neural_renderer/cuda/*.so neural_renderer/cuda/

Please download vgg19_conv.pth and put it in ./texture_style_transfer/transfer/models/.

Inputs

You can directly use the outputs (and inputs) from the previous parts.

Usage

cd texture_style_transfer
python transfer/main_texture_transfer.py -dd ../data_demo_or_your_data_dir

Acknowledgements

This code is built based heavliy on Neural 3D Mesh Renderer and STROTSS.

Citation

@ARTICLE{han2021exemplarbased,
author={Han, Fangzhou and Ye, Shuquan and He, Mingming and Chai, Menglei and Liao, Jing},  
journal={IEEE Transactions on Visualization and Computer Graphics},   
title={Exemplar-Based 3D Portrait Stylization},   
year={2021},  
doi={10.1109/TVCG.2021.3114308}}
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022