Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Overview

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

This repository contains a TensorFlow implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" by Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh (accepted as ORAL presentation in ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) 2019).

Paper link: https://arxiv.org/pdf/1905.07953.pdf

Requirements

1) Download metis-5.1.0.tar.gz from http://glaros.dtc.umn.edu/gkhome/metis/metis/download and unpack it
2) cd metis-5.1.0
3) make config shared=1 prefix=~/.local/
4) make install
5) export METIS_DLL=~/.local/lib/libmetis.so
  • install required Python packages
 pip install -r requirements.txt

quick test to see whether you install metis correctly:

>>> import networkx as nx
>>> import metis
>>> G = metis.example_networkx()
>>> (edgecuts, parts) = metis.part_graph(G, 3)
  • We follow GraphSAGE's input format and its code for pre-processing the data.

  • This repository includes scripts for reproducing our experimental results on PPI and Reddit. Both datasets can be downloaded from this website.

Run Experiments.

  • After metis and networkx are set up, and datasets are ready, we can try the scripts.

  • We assume data files are stored under './data/{data-name}/' directory.

    For example, the path of PPI data files should be: data/ppi/ppi-{G.json, feats.npy, class_map.json, id_map.json}

  • For PPI data, you may run the following scripts to reproduce results in our paper

./run_ppi.sh

For reference, with a V100 GPU, running time per epoch on PPI is about 1 second.

The test F1 score will be around 0.9935 depending on different initialization.

  • For reddit data (need change the data_prefix path in .sh to point to the data):
./run_reddit.sh

In the experiment section of the paper, we show how to generate Amazon2M dataset. There is an external implementation for generating Amazon2M data following the same procedure in the paper (code and data).

Below shows a table of state-of-the-art performance from recent papers.

PPI Reddit
FastGCN (code) N/A 93.7
GraphSAGE (code) 61.2 95.4
VR-GCN (code) 97.8 96.3
GAT (code) 97.3 N/A
GaAN 98.71 96.36
GeniePath 98.5 N/A
Cluster-GCN 99.36 96.60

If you use any of the materials, please cite the following paper.

@inproceedings{clustergcn,
  title = {Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks},
  author = { Wei-Lin Chiang and Xuanqing Liu and Si Si and Yang Li and Samy Bengio and Cho-Jui Hsieh},
  booktitle = {ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)},
  year = {2019},
  url = {https://arxiv.org/pdf/1905.07953.pdf},
}

Owner
Jingwei Zheng
Jingwei Zheng
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023