Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Overview

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

This repository contains a TensorFlow implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" by Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh (accepted as ORAL presentation in ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) 2019).

Paper link: https://arxiv.org/pdf/1905.07953.pdf

Requirements

1) Download metis-5.1.0.tar.gz from http://glaros.dtc.umn.edu/gkhome/metis/metis/download and unpack it
2) cd metis-5.1.0
3) make config shared=1 prefix=~/.local/
4) make install
5) export METIS_DLL=~/.local/lib/libmetis.so
  • install required Python packages
 pip install -r requirements.txt

quick test to see whether you install metis correctly:

>>> import networkx as nx
>>> import metis
>>> G = metis.example_networkx()
>>> (edgecuts, parts) = metis.part_graph(G, 3)
  • We follow GraphSAGE's input format and its code for pre-processing the data.

  • This repository includes scripts for reproducing our experimental results on PPI and Reddit. Both datasets can be downloaded from this website.

Run Experiments.

  • After metis and networkx are set up, and datasets are ready, we can try the scripts.

  • We assume data files are stored under './data/{data-name}/' directory.

    For example, the path of PPI data files should be: data/ppi/ppi-{G.json, feats.npy, class_map.json, id_map.json}

  • For PPI data, you may run the following scripts to reproduce results in our paper

./run_ppi.sh

For reference, with a V100 GPU, running time per epoch on PPI is about 1 second.

The test F1 score will be around 0.9935 depending on different initialization.

  • For reddit data (need change the data_prefix path in .sh to point to the data):
./run_reddit.sh

In the experiment section of the paper, we show how to generate Amazon2M dataset. There is an external implementation for generating Amazon2M data following the same procedure in the paper (code and data).

Below shows a table of state-of-the-art performance from recent papers.

PPI Reddit
FastGCN (code) N/A 93.7
GraphSAGE (code) 61.2 95.4
VR-GCN (code) 97.8 96.3
GAT (code) 97.3 N/A
GaAN 98.71 96.36
GeniePath 98.5 N/A
Cluster-GCN 99.36 96.60

If you use any of the materials, please cite the following paper.

@inproceedings{clustergcn,
  title = {Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks},
  author = { Wei-Lin Chiang and Xuanqing Liu and Si Si and Yang Li and Samy Bengio and Cho-Jui Hsieh},
  booktitle = {ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)},
  year = {2019},
  url = {https://arxiv.org/pdf/1905.07953.pdf},
}

Owner
Jingwei Zheng
Jingwei Zheng
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021