An open-source project for applying deep learning to medical scenarios

Overview

Auto Vaidya

An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant detection, pneumonia detection, brain mri segmentation etc.

Suggestions for PR:

  • Please give your PR for the test branch unless requested otherwise by the project maintainer
  • Name your PR appropiately
  • Ensure that you had already raised an issue for this PR and the project maintainer had approved and assigned you
  • In the PR description, typically the following are expected:
    • Dataset Used:
    • Dataset Size:
    • Dataset Source:
    • Link to Colab Notebook: Please ensure you give access for view to anyone with link
    • Your Exploratory Data Analysis [Snapshots of the relevant ones and your inference from that]
    • Any Pre-Processing methods used. [Elaborate on them]
    • Your framework to train
    • Different methods used for training
    • Test/Train Split
    • Results: Please do not simply state test accuracy. Other perfomance metrics like F1 score,etc are expected
    • ** Draw a table to show the comparitive analysis of the performance of the different methods you used
    • Conclusion: Which method you think is best and why?
  • A copy of the notebook used for your training is expected inside the notebooks/ directory.
  • Please name the notebook as name_of_the_problem_your_github_username
  • The model files are expected to be inside a models\name_of_your_problem\ directory
  • If you are using TensorFlow 2.0, please give both the h5 as well as saved_model file
  • Once your PR, gets approved uptil this, proceed with a follow up pr to integrate it inside the streamlit app. Refer this if you are unaware of how to use streamlit and host it
  • For the streamlit app, it would be a good practice if you define the function for classification/prediction/regression inside a separate python file say your_problem_name.py and import it inside app.py ( Believe me this would save a lot of time otherwise wasted in debugging)
  • For the second PR, you are expected to do the above changes and provide screenshots/a small clip of the working model of the app after integrating your model from the previous PR
  • For the second PR, it should be one the test branch only, later the project maintainers will merge it with the master branch for a stable release
  • For PRs, related to frontend please give it to the frontend branch
  • Once accepted, give a follow up PR to the test branch to render your html,css files for a page using streamlit
  • As stated above you are expected to give screenshots, descriptions and other details for the PR

Entire App on Heroku: https://auto-vaidya.herokuapp.com/ Frontend on Netlify: autovaidya.netlify.app

Owner
Smaranjit Ghose
Life Long Learner
Smaranjit Ghose
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022