This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

Overview

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting

Python Pytorch

Project Page | YouTube | Paper

This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

Environment

conda install pytorch torchvision cudatoolkit=<your cuda version>
conda install pyyaml scikit-image scikit-learn opencv
pip install -r requirements.txt

Data

Mixamo

Mixamo is a synthesized 3D character animation dataset.

  1. Download mixamo data here.
  2. Extract under data/mixamo

For directions for downloading 3D Mixamo data please refer to this link.

SoloDance

SoloDance is a collection of dancing videos on youtube. We use DensePose to extract skeleton sequences from these videos for training.

  1. Download the extracted skeleton sequences here.
  2. Extract under data/solo_dance

The original videos can be downloaded here.

Preprocessing

run sh scripts/preprocess.sh to preprocess the two datasets above.

Pretrained model

Download the pretrained models here.

Inference

  1. For Skeleton Extraction, please consider using a pose estimation library such as Detectron2. We require the input skeleton sequences to be in the format of a numpy .npy file:

    • The file should contain an array with shape 15 x 2 x length.
    • The first dimension (15) corresponds the 15 body joint defined here.
    • The second dimension (2) corresponds to x and y coordinates.
    • The third dimension (length) is the temporal dimension.
  2. For Motion Retargeting Network, we provide the sample command for inference:

python infer_pair.py 
--config configs/transmomo.yaml 
--checkpoint transmomo_mixamo_36_800_24/checkpoints/autoencoder_00200000.pt # replace with actual path
--source a.npy  # replace with actual path
--target b.npy  # replace with actual path
--source_width 1280 --source_height 720 
--target_height 1920 --target_width 1080
  1. For Skeleton-to-Video Rendering, please refer to Everybody Dance Now.

Training

To train the Motion Retargeting Network, run

python train.py --config configs/transmomo.yaml

To train on the SoloDance dataest, run

python train.py --config configs/transmomo_solo_dance.yaml

Testing

For testing motion retargeting MSE, first generate the motion-retargeted motions with

python test.py
--config configs/transmomo.yaml # replace with the actual config used for training
--checkpoint transmomo_mixamo_36_800_24/checkpoints/autoencoder_00200000.pt
--out_dir transmomo_mixamo_36_800_24_results # replace actual path to output directory

And then compute MSE by

python scripts/compute_mse.py 
--in_dir transmomo_mixamo_36_800_24_results # replace with the previous output directory

Project Structure

transmomo.pytorch
├── configs - configuration files
├── data - place for storing data
├── docs - documentations
├── lib
│   ├── data.py - datasets and dataLoaders
│   ├── networks - encoders, decoders, discriminators, etc.
│   ├── trainer.py - training pipeline
│   ├── loss.py - loss functions
│   ├── operation.py - operations, e.g. rotation, projection, etc.
│   └── util - utility functions
├── out - place for storing output
├── infer_pair.py - perform motion retargeting
├── render_interpolate.py - perform motion and body interpolation
├── scripts - scripts for data processing and experiments
├── test.py - test MSE
└── train.py - main entrance for training

TODOs

  • Detailed documentation

  • Add example files

  • Release in-the-wild dancing video dataset (unannotated)

  • Tool for visualizing Mixamo test error

  • Tool for converting keypoint formats

Citation

Z. Yang*, W. Zhu*, W. Wu*, C. Qian, Q. Zhou, B. Zhou, C. C. Loy. "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting." IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. (* indicates equal contribution.)

BibTeX:

@inproceedings{transmomo2020,
  title={TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting},
  author={Yang, Zhuoqian and Zhu, Wentao and Wu, Wayne and Qian, Chen and Zhou, Qiang and Zhou, Bolei and Loy, Chen Change},
  booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}

Acknowledgement

This repository is partly based on Rundi Wu's Learning Character-Agnostic Motion for Motion Retargeting in 2D and Xun Huang's MUNIT: Multimodal UNsupervised Image-to-image Translation. The skeleton-to-rendering part is based on Everybody Dance Now. We sincerely thank them for their inspiration and contribution to the community.

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023