Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Overview

Autoregressive Predictive Coding

This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed in An Unsupervised Autoregressive Model for Speech Representation Learning.

APC is a speech feature extractor trained on a large amount of unlabeled data. With an unsupervised, autoregressive training objective, representations learned by APC not only capture general acoustic characteristics such as speaker and phone information from the speech signals, but are also highly accessible to downstream models--our experimental results on phone classification show that a linear classifier taking the APC representations as the input features significantly outperforms a multi-layer percepron using the surface features.

Dependencies

  • Python 3.5
  • PyTorch 1.0

Dataset

In the paper, we used the train-clean-360 split from the LibriSpeech corpus for training the APC models, and the dev-clean split for keeping track of the training loss. We used the log Mel spectrograms, which were generated by running the Kaldi scripts, as the input acoustic features to the APC models. Of course you can generate the log Mel spectrograms yourself, but to help you better reproduce our results, here we provide the links to the data proprocessed by us that can be directly fed to the APC models. We also include other data splits that we did not use in the paper for you to explore, e.g., you can try training an APC model on a larger and nosier set (e.g., train-other-500) and see if it learns more robust speech representations.

Training APC

Below we will follow the paper and use train-clean-360 and dev-clean as demonstration. Once you have downloaded the data, unzip them by running:

xz -d train-clean-360.xz
xz -d dev-clean.xz

Then, create a directory librispeech_data/kaldi and move the data into it:

mkdir -p librispeech_data/kaldi
mv train-clean-360-hires-norm.blogmel librispeech_data/kaldi
mv dev-clean-hires-norm.blogmel librispeech_data/kaldi

Now we will have to transform the data into the format loadable by the PyTorch DataLoader. To do so, simply run:

# Prepare the training set
python prepare_data.py --librispeech_from_kaldi librispeech_data/kaldi/train-clean-360-hires-norm.blogmel --save_dir librispeech_data/preprocessed/train-clean-360-hires-norm.blogmel
# Prepare the valication set
python prepare_data.py --librispeech_from_kaldi librispeech_data/kaldi/dev-clean-hires-norm.blogmel --save_dir librispeech_data/preprocessed/dev-clean-hires-norm-blogmel

Once the program is done, you will see a directory preprocessed/ inside librispeech_data/ that contains all the preprocessed PyTorch tensors.

To train an APC model, simply run:

python train_apc.py

By default, the trained models will be put in logs/. You can also use Tensorboard to trace the training progress. There are many other configurations you can try, check train_apc.py for more details--it is highly documented and should be self-explanatory.

Feature extraction

Once you have trained your APC model, you can use it to extract speech features from your target dataset. To do so, feed-forward the trained model on the target dataset and retrieve the extracted features by running:

_, feats = model.forward(inputs, lengths)

feats is a PyTorch tensor of shape (num_layers, batch_size, seq_len, rnn_hidden_size) where:

  • num_layers is the RNN depth of your APC model
  • batch_size is your inference batch size
  • seq_len is the maximum sequence length and is determined when you run prepare_data.py. By default this value is 1600.
  • rnn_hidden_size is the dimensionality of the RNN hidden unit.

As you can see, feats is essentially the RNN hidden states in an APC model. You can think of APC as a speech version of ELMo if you are familiar with it.

There are many ways to incorporate feats into your downstream task. One of the easiest way is to take only the outputs of the last RNN layer (i.e., feats[-1, :, :, :]) as the input features to your downstream model, which is what we did in our paper. Feel free to explore other mechanisms.

Pre-trained models

We release the pre-trained models that were used to produce the numbers reported in the paper. load_pretrained_model.py provides a simple example of loading a pre-trained model.

Reference

Please cite our paper(s) if you find this repository useful. This first paper proposes the APC objective, while the second paper applies it to speech recognition, speech translation, and speaker identification, and provides more systematic analysis on the learned representations. Cite both if you are kind enough!

@inproceedings{chung2019unsupervised,
  title = {An unsupervised autoregressive model for speech representation learning},
  author = {Chung, Yu-An and Hsu, Wei-Ning and Tang, Hao and Glass, James},
  booktitle = {Interspeech},
  year = {2019}
}
@inproceedings{chung2020generative,
  title = {Generative pre-training for speech with autoregressive predictive coding},
  author = {Chung, Yu-An and Glass, James},
  booktitle = {ICASSP},
  year = {2020}
}

Contact

Feel free to shoot me an email for any inquiries about the paper and this repository.

Owner
iamyuanchung
Natural language & speech processing researcher
iamyuanchung
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023