BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

Overview

BraTS(Brain Tumour Segmentation) using V-Net

This project is an approach to detect brain tumours using BraTS 2016,2017 dataset.

Description

BraTS is a dataset which provides multimodal 3D brain MRIs annotated by experts. Each Magnetic Resonance Imaging(MRI) scan consists of 4 different modalities(Flair,T1w,t1gd,T2w). Expert annotations are provided in the form of segmentation masks to detect 3 classes of tumour - edema(ED),enhancing tumour(ET),necrotic and non-enhancing tumour(NET/NCR). The dataset is challenging in terms of the complex and heterogeneously-located targets. We use Volumetric Network(V-Net) which is a 3D Fully Convolutional Network(FCN) for segmentation of 3D medical images. We use Dice Loss as the objective function for the present scenario. Future implementation will include Hausdorff Loss for better boundary segmentations.



Fig 1: Brain Tumour Segmentation

Getting Started

Dataset

4D Multimodal MRI dataset

The dataset contains 750 4D volumes of MRI scans(484 for training and 266 for testing). Since the test set is not publicly available we split the train set into train-val-split. We use 400 scans for training and validation and the rest 84 for evaluation. No data augmentations are applied to the data. The data is stored in NIfTI file format(.nii.gz). A 4D tensor of shape (4,150,240,240) is obtained after reading the data where the 1st dimension denotes the modality(Flair,T1w,t1gd,T2w), 2nd dimension denotes the number of slices and the 3rd and 4th dimesion denotes the width and height respectively. We crop each modality to (32,128,128) for computational purpose and stack each modality along the 0th axis. The segmentation masks contain 3 classes - ED,ET,NET/NCR. We resize and stack each class to form a tensor of shape (3,32,128,128).

Experimental Details

Loss functions

We use Dice loss as the objective function to train the model.




Training

We use Adam optimizer for optimizing the objective function. The learning rate is initially set to 0.001 and halved after every 100 epochs. We train the network until 300 epochs and the best weights are saved accordingly. We use NVIDIA Tesla P100 with 16 GB of VRAM to train the model.

Quantative Results

We evaluate the model on the basis of Dice Score Coefficient(DSC) and Intersection over Union(IoU) over three classes (WT+TC+ET).




Qualitative Results



Fig 1: Brain Complete Tumour Segmentation(blue indicates ground truth segmentation and red indicates predicted segmentation)

Statistical Inference



Fig 1: Validation Dice Score Coefficient(DSC)


Fig 2: Validation Dice Loss

Dependencies

  • SimpleITK 2.0.2
  • Pytorch 1.8.0
  • CUDA 10.2
  • TensorBoard 2.5.0

Installing

 pip install SimpleITK
 pip install tensorboard

Execution

 python train.py

train.py contains code for training the model and saving the weights.

loader.py contains code for dataloading and train-test split.

utils.py contains utility functions.

evaluate.py contains code for evaluation.

Acknowledgments

[1] BraTS 3D UNet

[2] VNet

Owner
Rituraj Dutta
Passionate about AI and Deep Learning
Rituraj Dutta
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022