[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Related tags

Deep LearningFTCN
Overview

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN)

Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen

Accepted by ICCV 2021

Paper

Abstract

Although current face manipulation techniques achieve impressive performance regarding quality and controllability, they are struggling to generate temporal coherent face videos. In this work, we explore to take full advantage of the temporal coherence for video face forgery detection. To achieve this, we propose a novel end-to-end framework, which consists of two major stages. The first stage is a fully temporal convolution network (FTCN). The key insight of FTCN is to reduce the spatial convolution kernel size to 1, while maintaining the temporal convolution kernel size unchanged. We surprisingly find this special design can benefit the model for extracting the temporal features as well as improve the generalization capability. The second stage is a Temporal Transformer network, which aims to explore the long-term temporal coherence. The proposed framework is general and flexible, which can be directly trained from scratch without any pre-training models or external datasets. Extensive experiments show that our framework outperforms existing methods and remains effective when applied to detect new sorts of face forgery videos.

Setup

First setup python environment with pytorch 1.4.0 installed, it's highly recommended to use docker image pytorch/pytorch:1.4-cuda10.1-cudnn7-devel, as the pretrained model and the code might be incompatible with higher version pytorch.

then install dependencies for the experiment:

pip install -r requirements.txt

Test

Inference Using Pretrained Model on Raw Video

Download FTCN+TT model trained on FF++ from here and place it under ./checkpoints folder

python test_on_raw_video.py examples/shining.mp4 output

the output will be a video under folder output named shining.avi

TODO

  • Release inference code.
  • Release training code.
  • Code cleaning.

Acknowledgments

This code borrows heavily from SlowFast.

The face detection network comes from biubug6/Pytorch_Retinaface.

The face alignment network comes from cunjian/pytorch_face_landmark.

Citation

If you use this code for your research, please cite our paper.

@article{zheng2021exploring,
  title={Exploring Temporal Coherence for More General Video Face Forgery Detection},
  author={Zheng, Yinglin and Bao, Jianmin and Chen, Dong and Zeng, Ming and Wen, Fang},
  journal={arXiv preprint arXiv:2108.06693},
  year={2021}
}
You might also like...
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Face Library is an open source package for accurate and real-time face detection and recognition
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Official project website for the CVPR 2021 paper
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

Comments
  • Question about the structure of ResNet3D

    Question about the structure of ResNet3D

    您好,代码中conv1的kernel size为[5,7,7],stride为[1,2,2]。而论文中kernel size为[5,1,1],stride为[1,1,1]。 请问,是否可以给出论文中实际使用的,完整的模型结构呢?

    temp_kernel[0][0] = [5]
    self.s1 = stem_helper.VideoModelStem(
        dim_in=cfg.DATA.INPUT_CHANNEL_NUM,
        dim_out=[width_per_group],
        kernel=[temp_kernel[0][0] + [7, 7]],
        stride=[[1, 2, 2]],
        padding=[[temp_kernel[0][0][0] // 2, 3, 3]],
        norm_module=self.norm_module)
    
    opened by crywang 2
  • 关于模型结构的问题

    关于模型结构的问题

    按文章中的结构,每个ResBlock中a、b、c三个kernel的size分别应为[1,1,1],[3,1,1]与[1,1,1]。 但代码所输出结构与文中结构不符(如下),或许是理解错误,烦请解惑: res2:

      (s2): ResStage(
        (pathway0_res0): ResBlock(
          (branch1): Conv3d(64, 256, kernel_size=(1, 1, 1), stride=[1, 1, 1], bias=False)
          (branch1_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (branch2): BottleneckTransform(
            (a): Conv3d(64, 64, kernel_size=[3, 1, 1], stride=[1, 1, 1], padding=[1, 0, 0], bias=False)
            (a_bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(64, 64, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(64, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res1): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(256, 64, kernel_size=[3, 1, 1], stride=[1, 1, 1], padding=[1, 0, 0], bias=False)
            (a_bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(64, 64, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(64, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res2): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(256, 64, kernel_size=[3, 1, 1], stride=[1, 1, 1], padding=[1, 0, 0], bias=False)
            (a_bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(64, 64, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(64, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
      )
    

    res3:

    (s3): ResStage(
        (pathway0_res0): ResBlock(
          (branch1): Conv3d(256, 512, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
          (branch1_bn): Sequential(
            (0): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2), padding=0, dilation=1, ceil_mode=False)
          )
          (branch2): BottleneckTransform(
            (a): Conv3d(256, 128, kernel_size=[3, 1, 1], stride=[1, 1, 1], padding=[1, 0, 0], bias=False)
            (a_bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(128, 128, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): Sequential(
              (0): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2), padding=0, dilation=1, ceil_mode=False)
            )
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(128, 512, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res1): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(512, 128, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (a_bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(128, 128, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(128, 512, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res2): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(512, 128, kernel_size=[3, 1, 1], stride=[1, 1, 1], padding=[1, 0, 0], bias=False)
            (a_bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(128, 128, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(128, 512, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res3): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(512, 128, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (a_bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(128, 128, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(128, 512, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
      )
    

    res4:

    (s4): ResStage(
        (pathway0_res0): ResBlock(
          (branch1): Conv3d(512, 1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
          (branch1_bn): Sequential(
            (0): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2), padding=0, dilation=1, ceil_mode=False)
          )
          (branch2): BottleneckTransform(
            (a): Conv3d(512, 256, kernel_size=[3, 1, 1], stride=[1, 1, 1], padding=[1, 0, 0], bias=False)
            (a_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(256, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): Sequential(
              (0): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2), padding=0, dilation=1, ceil_mode=False)
            )
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(256, 1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res1): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(1024, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (a_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(256, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(256, 1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res2): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(1024, 256, kernel_size=[3, 1, 1], stride=[1, 1, 1], padding=[1, 0, 0], bias=False)
            (a_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(256, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(256, 1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res3): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(1024, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (a_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(256, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(256, 1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res4): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(1024, 256, kernel_size=[3, 1, 1], stride=[1, 1, 1], padding=[1, 0, 0], bias=False)
            (a_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(256, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(256, 1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res5): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(1024, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (a_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(256, 256, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(256, 1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
      )
    

    res5:

    (s5): ResStage(
        (pathway0_res0): ResBlock(
          (branch1): Conv3d(1024, 2048, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
          (branch1_bn): Sequential(
            (0): BatchNorm3d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2), padding=0, dilation=1, ceil_mode=False)
          )
          (branch2): BottleneckTransform(
            (a): Conv3d(1024, 512, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (a_bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(512, 512, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): Sequential(
              (0): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (1): MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2), padding=0, dilation=1, ceil_mode=False)
            )
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(512, 2048, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res1): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(2048, 512, kernel_size=[3, 1, 1], stride=[1, 1, 1], padding=[1, 0, 0], bias=False)
            (a_bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(512, 512, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(512, 2048, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
        (pathway0_res2): ResBlock(
          (branch2): BottleneckTransform(
            (a): Conv3d(2048, 512, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (a_bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (a_relu): ReLU(inplace=True)
            (b): Conv3d(512, 512, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], bias=False)
            (b_bn): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (b_relu): ReLU(inplace=True)
            (c): Conv3d(512, 2048, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False)
            (c_bn): BatchNorm3d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (relu): ReLU(inplace=True)
        )
      )
    
    opened by crywang 1
  • Bug in test_on_raw_video

    Bug in test_on_raw_video

    In

                l_post = len(post_module)
                post_module = post_module * (pad_length // l_post + 1)
                post_module = post_module[:pad_length]
                assert len(post_module) == pad_length
    
                pre_module = inner_index + inner_index[1:-1][::-1]
                l_pre = len(post_module)
                pre_module = pre_module * (pad_length // l_pre + 1)
                pre_module = pre_module[-pad_length:]
                assert len(pre_module) == pad_length
    

    the code

     l_pre = len(post_module)
    

    should be replaced by

     l_pre = len(pre_module)
    

    is it right?

    opened by LOOKCC 0
Releases(weights)
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022