A nutritional label for food for thought.

Overview

Lexiscore

As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional label for food for thought designed to help you narrow in on resources which personally bring you the most value. The open source companion software can automatically label raw text originating from RSS feeds, bookmarked pages, PDFs, EPUBs, and more. In the scope of this project, I'm considering valuable resources to be those from which you learn a lot, those which are packed with ideas you find surprising.

Read more...

Installation

Note: This tool requires a running instance of the conceptarium as a proxy for your knowledge.

The lexiscore labeler can either be deployed from source or using Docker.

Docker

To deploy the lexiscore labeler using Docker, first make sure to have Docker installed, then simply run the following.

docker run -p 8501:8501 paulbricman/lexiscore 

The tool should be available at localhost:8501.

From Source

To set up the lexiscore labeler, clone the repository and run the following:

python3 -m pip install -r requirements.txt
streamlit run main.py

The tool should be available at localhost:8501.

Screenshots

You might also like...
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Official Pytorch Implementation of:
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

 Shared Attention for Multi-label Zero-shot Learning
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Code for Two-stage Identifier:
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

Official implementation of paper
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Comments
  • RSS OPML only pulls last article

    RSS OPML only pulls last article

    Summary

    Adding RSS from OPML only pulls the last article.

    Details

    After setting up lexiscore, I take my blog's RSS (https://ivans.io/rss/) and convert it to OPML using https://opml-gen.ovh/. This yields the following file:

    <opml version="2.0">
    	<body>
    		<outline text="Subscriptions" title="Subscriptions">
    			<outline xmlUrl='https://ivans.io/rss/' />
    	
    		</outline>
    	</body>
    </opml>
    

    After adding this to lexiscore, only the most recent article appears in the reading list. I've checked the RSS feed, and all articles are fully present.

    Desired Behavior

    RSS feeds should pull all articles.

    opened by issmirnov 4
  • NLTK downloader problem when deploying with docker.

    NLTK downloader problem when deploying with docker.

    I have deployed the docker image to my personal server. After importing the RSS from my blog (https://ivans.io/rss/) as an OPML file, I click on "start labelling". This causes a stack trace:

    LookupError: ********************************************************************** 
    Resource punkt not found. Please use the NLTK Downloader to obtain the resource: 
    [31m>>> import nltk >>> nltk.download('punkt') 
    [0m For more information see: https://www.nltk.org/data.html Attempted to load tokenizers/punkt/PY3/english.pickle
    [0m Searched in: - '/root/nltk_data' - '/usr/local/nltk_data' - '/usr/local/share/nltk_data' - '/usr/local/lib/nltk_data' - '/usr/share/nltk_data' - '/usr/local/share/nltk_data' - '/usr/lib/nltk_data' - '/usr/local/lib/nltk_data' - '' **********************************************************************
    Traceback:
    File "/usr/local/lib/python3.8/site-packages/streamlit/script_runner.py", line 354, in _run_script
        exec(code, module.__dict__)
    File "/app/main.py", line 30, in <module>
        cart_section(col2)
    File "/app/components.py", line 110, in cart_section
        content_paragraphs = get_paragraphs(row['text'])
    File "/app/processing.py", line 19, in get_paragraphs
        sents = sent_tokenize(line)
    File "/usr/local/lib/python3.8/site-packages/nltk/tokenize/__init__.py", line 107, in sent_tokenize
        tokenizer = load("tokenizers/punkt/{0}.pickle".format(language))
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 750, in load
        opened_resource = _open(resource_url)
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 875, in _open
        return find(path_, path + [""]).open()
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 583, in find
        raise LookupError(resource_not_found)
    
    opened by issmirnov 3
  • Add aggregator page as input source

    Add aggregator page as input source

    Imagine adding this as input sources of type "Aggregator": https://metaphor.so/search?q=The%20coolest%20essay%20on%20human-machine%20collaboration%2C%20cognitive%20augmentation%2C%20and%20tools%20for%20thought%20is

    The labeling software would sift through and add a nutritional value filter on top of a cool "search" approach

    enhancement 
    opened by paulbricman 0
  • Save concptarium URL with local cookie

    Save concptarium URL with local cookie

    Currently, I have this deployed via docker on a personal server. On every page refresh, I am asked for the url of the conceptarium. It would be useful to have this URL saved in local cookie storage.

    enhancement 
    opened by issmirnov 1
Releases(v1.0.0)
Owner
Paul Bricman
Building tools which augment the mind.
Paul Bricman
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022