TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Overview

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nigel Collier

Code of our paper: TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Introduction:

Masked language models (MLMs) such as BERT and RoBERTa have revolutionized the field of Natural Language Understanding in the past few years. However, existing pre-trained MLMs often output an anisotropic distribution of token representations that occupies a narrow subset of the entire representation space. Such token representations are not ideal, especially for tasks that demand discriminative semantic meanings of distinct tokens. In this work, we propose TaCL (Token-aware Contrastive Learning), a novel continual pre-training approach that encourages BERT to learn an isotropic and discriminative distribution of token representations. TaCL is fully unsupervised and requires no additional data. We extensively test our approach on a wide range of English and Chinese benchmarks. The results show that TaCL brings consistent and notable improvements over the original BERT model. Furthermore, we conduct detailed analysis to reveal the merits and inner-workings of our approach

Main Results:

We show the comparison between TaCL (base version) and the original BERT (base version).

(1) English benchmark results on SQuAD (Rajpurkar et al., 2018) (dev set) and GLUE (Wang et al., 2019) average score.

Model SQuAD 1.1 (EM/F1) SQuAD 2.0 (EM/F1) GLUE Average
BERT 80.8/88.5 73.4/76.8 79.6
TaCL 81.6/89.0 74.4/77.5 81.2

(2) Chinese benchmark results (test set F1) on four NER tasks (MSRA, OntoNotes, Resume, and Weibo) and three Chinese word segmentation (CWS) tasks (PKU, CityU, and AS).

Model MSRA OntoNotes Resume Weibo PKU CityU AS
BERT 94.95 80.14 95.53 68.20 96.50 97.60 96.50
TaCL 95.44 82.42 96.45 69.54 96.75 98.16 96.75

Huggingface Models:

Model Name Model Address
English (cambridgeltl/tacl-bert-base-uncased) link
Chinese (cambridgeltl/tacl-bert-base-chinese) link

Example Usage:

import torch
# initialize model
from transformers import AutoModel, AutoTokenizer
model_name = 'cambridgeltl/tacl-bert-base-uncased'
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# create input ids
text = '[CLS] clbert is awesome. [SEP]'
tokenized_token_list = tokenizer.tokenize(text)
input_ids = torch.LongTensor(tokenizer.convert_tokens_to_ids(tokenized_token_list)).view(1, -1)
# compute hidden states
representation = model(input_ids).last_hidden_state # [1, seqlen, embed_dim]

Tutorial (in Chinese language) on how to use Chinese TaCL BERT to performance Name Entity Recognition and Chinese word segmentation:

Tutorial link

Tutorial on how to reproduce the results in our paper:

1. Environment Setup:

python version: 3.8
pip3 install -r requirements.txt

2. Train TaCL:

(1) Prepare pre-training data:

Please refer to details provided in ./pretraining_data directory.

(2) Train the model:

Please refer to details provided in ./pretraining directory.

3. Experiments on English Benchmarks:

Please refer to details provided in ./english_benchmark directory.

4. Experiments on Chinese Benchmarks:

(1) Chinese Benchmark Data Preparation:

chmod +x ./download_benchmark_data.sh
./download_benchmark_data.sh

(2) Fine-tuning and Inference:

Please refer to details provided in ./chinese_benchmark directory.

5. Replicate Our Analysis Results:

We provide all essential code to replicate the results (the images below) provided in our analysis section. The related codes and instructions are located in ./analysis directory. Have fun!

Citation:

If you find our paper and resources useful, please kindly cite our paper:

@misc{su2021tacl,
      title={TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning}, 
      author={Yixuan Su and Fangyu Liu and Zaiqiao Meng and Lei Shu and Ehsan Shareghi and Nigel Collier},
      year={2021},
      eprint={2111.04198},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Contact

If you have any questions, feel free to contact me via ([email protected]).

Owner
Yixuan Su
I am a final-year PhD student at the University of Cambridge, supervised by Professor Nigel Collier.
Yixuan Su
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022