Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Overview

Audio-Track Separator

architecture

Introduction

Audio Source Separation is the process of separating a mixture (e.g. a pop band recording) into isolated sounds from individual sources (e.g. just the lead vocals). Basically, splitting a song into separate vocals and instruments.

In this Repository, We developed an audio track separator in tensorflow that successfully separates Vocals and Drums from an input audio song track.

We trained a U-Net model with two output layers. One output layer predicts the Vocals and the other predicts the Drums. The number of Output layers could be increased based on the number of elements one needs to separate from input Audio Track.

Technologies used:

  1. The entire architecture is built with tensorflow.
  2. Matplotlib has been used for visualization.
  3. Numpy has been used for mathematical operations.
  4. Librosa have used for the processing of Audio files.
  5. nussl for Dataset.

The dataset

We will be using the MUSDB18 dataset for this tutorial.

The musdb18 is a dataset of 150 full lengths music tracks (~10h duration) of different genres along with their isolated drums, bass, vocals and others stems.

musdb18 contains two folders, a folder with a training set: "train", composed of 100 songs, and a folder with a test set: "test", composed of 50 songs. Supervised approaches should be trained on the training set and tested on both sets.

All signals are stereophonic and encoded at 44.1kHz.

Exploratory Data Analysis

eda

resample

Building a Data Loader

In the pipeline we are re-sampling the audio data. For the time being our target is to separate the the Vocal and Drums audio from the original, hence the Pipeline returns original processed Audio as X and an array of processed Vocals & Drums audio as y.

Unet Architecture

model = AudioTrackSeparation()
model.build(input_shape=(None, DIM, 1))
model.build_graph().summary()

summary

summary


Implementation

Training

!python main.py --sampling_rate 11025 --train True --epoch 50 --batch 16 --model_save_path ./models/

Trains the u-net model on MUSDB18 Dataset and saves the trained model to the provided directory ( --model_save_path ).

Testing

!python main.py --sampling_rate 11025 --test /content/pop.00000.wav --model_save_path ./models/

Loads the model from model_save_path, reads the audio file from the provided path( --test ) with librosa, process it and use the model to predict the output. In the end, the predictions are visualized by a wave plot and saved to the root directory.

example1

example2

Model Performance

vocal loss

drum loss

Predictions

Drums

Drums

References

  1. Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation

  2. Multi-scale Multi-band DenseNets for Audio Source Separation

  3. Improved Speech Enhancement with the Wave-U-Net

Owner
Victor Basu
Hello! I am Data Scientist and I love to do research on Data Science and Machine Learning
Victor Basu
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
3 Apr 20, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022