a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

Related tags

Deep LearningUDL
Overview

UDL

UDL is a practicable framework used in Deep Learning (computer vision).

Benchmark

codes, results and models are available in UDL, please contact @Liang-Jian Deng (corresponding author)

Pansharpening model zoo:
  • PNN (RS'2016)
  • PanNet (CVPR'2017)
  • DiCNN1 (JSTAR'2019)
  • FusionNet (TGRS'2020)
  • DCFNet (ICCV'2021)

Results of DCFNet

Quantitative results

wv3 SAM ERGAS
new_data10 3.934 2.531
new_data11 4.133 2.630
new_data12_512 4.108 2.712
new_data6 2.638 1.461
new_data7 3.866 2.820
new_data8 3.257 2.210
new_data9 4.154 2.718
Avg(std) 3.727(0.571) 2.440(0.474)
Ideal Value 0 0
wv3_1258 SAM ERGAS
Avg(std) 3.377(1.200) 2.257(0.910)
Ideal Value 0 0

Visual results

please see the paper and the sub-directory: ./UDL/results/DCFNet

Install [Option]

please run python setup.py develop

Usage

open UDL/panshaprening/tests, run the following code:

python run_DCFNet.py

Note that default configures don't fit other environments, you can modify configures in pansharpening/models/DCFNet/option_DCFNet.py.

Benefit from mmcv/config.py, the project has the global configures in Basis/option.py, option_DCFNet inherits directly from Basis/option.py.

1. Data preparation

You need to download WorldView-3 datasets.

The directory tree should be look like this:

|-$ROOT/datasets
├── pansharpening
│   ├── training_data
│   │   ├── train_wv3_10000.h5
│   │   ├── valid_wv3_10000.h5
│   ├── test_data
│   │   ├── WV3_Simu
│   │   │   ├── new_data6.mat
│   │   │   ├── new_data7.mat
│   │   │   ├── ...
│   │   ├── WV3_Simu_mulExm
│   │   │   ├── test1_mulExm1258.mat

2. Training

args.eval = False, args.dataset='wv3'

3. Inference

args.eval = True, args.dataset='wv3_singleMat'

Plannings

Please expect more tasks and models

  • pansharpening

    • models
  • derain

    • models
  • HISR

    • models

Contribution

We appreciate all contributions to improve UDL. Looking forward to your contribution to UDL.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@InProceedings{Wu_2021_ICCV,
    author    = {Wu, Xiao and Huang, Ting-Zhu and Deng, Liang-Jian and Zhang, Tian-Jing},
    title     = {Dynamic Cross Feature Fusion for Remote Sensing Pansharpening},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14687-14696}
}

Acknowledgement

  • MMCV: OpenMMLab foundational library for computer vision.
  • HRNet : High-resolution networks and Segmentation Transformer for Semantic Segmentation

License & Copyright

This project is open sourced under GNU General Public License v3.0

Owner
Xiao Wu
Xiao Wu
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023