Calling Julia from Python - an experiment on data loading

Overview

Calling Julia from Python - an experiment on data loading

DOI

See the slides.

TLDR

After reading Patrick's blog post, we decided to try to replace C++ with Julia to check:

  • How easy/hard it is
  • How much improvement can be gained with a basic version
  • How much improvement can be gained with an optimized version

A basic version is already an improvement over the pure Python version, and an optimized version was faster than the C++ version.

Reproduction

  • Follow Patrick's blog post to install the C++ part.
  • Install Julia (We've used Julia 1.6.3)
    • I recommend using Jill
    • We'll refer to this Julia as path/to/julia.
  • Install Python
    • Ideally, one dynamically linked to libpython.
    • To test it, use ldd path/to/python and look for libpython3.9. It should exist for the shared version.
    • If you don't have, look into workarounds here
    • Tip: Archlinux's system Python is dynamically linked.
    • We've used Python 3.9.7 from Archlinux.
  • Open Julia and enter the following commands:
    • ENV["PYTHON"] = "path/to/python"
    • using Pkg
    • Pkg.add("PyCall")
    • This will make sure that the packages we are installing use the correct Python version
  • Install juliapy with path/to/python -m pip install julia
  • Run path/to/python and enter
    • import julia
    • julia.install("julia=path/to/julia")
  • Download dataset and store in gen-data folder: Zenodo badge
  • Run scalability_test.py - it should take several hours (over 10) and consume a moderate amount of memory.
  • Run scalability_analysis.py.
You might also like...
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Python and Julia in harmony.
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

✔️ Visual, reactive testing library for Julia. Time machine included.
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Comments
  • Fix python versions ~~using poetry~~

    Fix python versions ~~using poetry~~

    To prevent this pull request from becoming too large, I'll merge this and create a new issue to set the python versions.

    Originally posted by @abelsiqueira in https://github.com/abelsiqueira/call-julia-from-python-experiments/issues/1#issuecomment-987970132

    opened by abelsiqueira 1
  • Improve docker-10

    Improve docker-10

    Fixes: #10

    • Changes Ubuntu version to 21.10
    • Adds extra environment variables
    • Removes the Python virtual environment
    • Add make flags to compile the tools faster
    • Remove the downloaded tar files
    • Uninstall dev dependencies
    opened by fdiblen 0
Releases(v0.3.0)
Owner
Abel Siqueira
Abel Siqueira
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023