All of the figures and notebooks for my deep learning book, for free!

Overview

"Deep Learning - A Visual Approach" by Andrew Glassner

This is the official repo for my book from No Starch Press.

Ordering the book

My book is called Deep Learning: A Visual Approach Click on the link to order it in physical or Ebook formats.

Free Bonus Chapters!

Three free bonus chapters! How to use scikit-learn for machine learning, and how to use Keras for deep learning. Free text, free notebooks, free figures, the whole thing! Just click here or click on the Bonus Chapters repo. The figures and notebooks are saved with all of the other figures and notebooks (see below).

Free Figures!

All the figures from my book, for free, in high-resolution PNG format. To help you search, there's a directory called Thumbnails which offers contact sheets of the figures, 20 per page.

All of these figures are released under the MIT license. This means you're free to use them any way you like, as long as you keep the copyright associated with them somehow. Use them for your classes, reports, papers, presentations, whatever you like!

You're not required to attribute me or the book if you use these images, but I'd appreciate it if you would.

Some figures include photographs. Many of these are by me, and I've given you permission to use them. All other photos are from Wikiart, Wikimedia, or Pixabay. The book provides a citation and URL to the source of each of these images. The first two sites state that their images are in the public domain. All images selected from Pixabay are labeled as released under the Creative Commons CC0 license, and explicitly state, "Free for commercial use. No attribution required."

Free Notebooks!

Jupyter notebooks for making many of the figures in the book.

Since the purpose of the notebooks was to make figures, rather than to serve as tutorials, they are only lightly commented, but they're meant to be readable. So I used longer but clearer variable names, and whenever I could I preferred clarity over most other concerns. This means that much of the code can be shortened, reorganized or otherwise refactored, and almost always it can be changed to be more compact, elegant, and faster. Feel free to dig in, optimize, convert to other languages, or otherwise play with the code.

All the notebooks are released under the MIT license. Informally, you're free to do pretty much anything with the code, including using it in your own projects, or even including it in commercial projects, as long as you keep my copyright along with the code. While I strove for accuracy and correctness, there is no warranty that the code is bug-free or fit for any purpose.

Some notebooks work with images. The images I used in the book are included with the notebooks. See the section below on Figures for details on their licensing, and see the book for the URL where each image may be found. All images without an explicit citation in the book are by the author, and are released under the MIT license.

Errata

A book of this size will inevitably have errors. For each error I'm aware of, I'll update the appropriate figure(s) and/or notebook(s), and then put a description of the error (along with a credit to the person who found it) in a plain-text file in the Errata folder.

Have Fun!

Owner
Andrew Glassner
Andrew Glassner
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022