Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Related tags

Deep LearningURN
Overview

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Introduction

This is a PyTorch implementation of Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation (AAAI2022), based on mmsegmentation. Please refer the classification phase to PMM and refer the segmentation phase to WSSS_MMSeg.

In this papper, we mitigate the noise of pseudo-mask in segmentation phase via uncertainty from response scaling which simulates the behavior of noise. This technique is applicable to all weakly-supervised semantic segmentation methods based on fully-supervised semantic segmentation.

Uncertainty visualization uncertainty visualization

Framework visualization framework visualization

Preparation

(Extract code of BaiduYun: mtci)

Datasets and pretrained weights

VOC12 OneDrive, BaiduYun; COCO14 BaiduYun; Pretrained weights OneDrive, BaiduYun

Pseduo-masks from classification phase

Pseudo-masks (if you want to skip cls phase), VOC12 OneDrive, COCO14 BaiduYun

Intermediate segmentation weights for uncertainty and cyclic pseudo-mask

Intermediate weights (if you want to skip first segmentation), BaiduYun

Released segmentation weights for test and visualization

Released weights, BaiduYun

Once downloaded, execute the following commands to link the datasets and weights.

git clone https://github.com/XMed-Lab/URN.git
cd URN
mkdir data
cd  data
ln -s [path to model files] models
ln -s [path to voc12] voc12
ln -s [path to coco2014] coco2014
ln -s [path to your voc pseudo-mask] voc12/VOC2012/ppmg
ln -s [path to your coco pseudo-mask] coco2014/voc_format/ppmg

Run the code

(If you don't run on server cluster based on srun, please modify the scripts "tools/dist_*.sh" refer to given scripts "tools/srun_*.sh")

Installation
cd URN
pip install mmcv==1.1.5
pip install -e .

(If you meet installation problems, please refer to mmsegmentation)

Train segmentation for the first time (you can skip it by intermediate weights)
cd URN
bash tools/slurm_train.sh [cluster partition] python configs/pspnet_wsss/pspnet_res2net_20k_voc12aug_pus.py work_dirs/voc12_r2n_pus 8
Uncertainty estimation and generate cyclic pseudo-mask
bash tools/slurm_test.sh [cluster partition] python configs/pspnet_wsss/pspnet_res2net_20k_voc12aug_uncertainty.py [intermediate weights] 8
Train segmentation with reweight strategy
bash tools/slurm_train.sh [cluster partition] python configs/pspnet_wsss/pspnet_res2net_20k_voc12aug_urn.py work_dirs/voc12_r2n_urn 8
Notes:
  1. We provide other backbones, including ResNet101, ScaleNet101, Wide-ResNet38
  2. Configs of COCO14 are provided in "configs/pspnet_wsss"
  3. It's suggested to use multiple cluster nodes to accelerate the genetation of pseudo-mask when use "tools/slurm_test.sh"
  4. Run "tools/run_pmm.sh" to get baselines of PMM

License

Please refer to: LICENSE.

Owner
XMed-Lab
Medical AI and Computer Vision Group, HKUST
XMed-Lab
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022