This repository provides an efficient PyTorch-based library for training deep models.

Related tags

Deep LearningHammer
Overview

An Efficient Library for Training Deep Models

This repository provides an efficient PyTorch-based library for training deep models.

Installation

Make sure your Python >= 3.7, CUDA version >= 11.1, and CUDNN version >= 7.6.5.

  1. Install package requirements via conda:

    conda create -n <ENV_NAME> python=3.7  # create virtual environment with Python 3.7
    conda activate <ENV_NAME>
    pip install -r requirements/minimal.txt -f https://download.pytorch.org/whl/cu111/torch_stable.html
  2. To use video visualizer (optional), please also install ffmpeg.

    • Ubuntu: sudo apt-get install ffmpeg.
    • MacOS: brew install ffmpeg.
  3. To reduce memory footprint (optional), you can switch to either jemalloc (recommended) or tcmalloc rather than your default memory allocator.

    • jemalloc (recommended):
      • Ubuntu: sudo apt-get install libjemalloc
    • tcmalloc:
      • Ubuntu: sudo apt-get install google-perftools
  4. (optional) To speed up data loading on NVIDIA GPUs, you can install DALI, together with dill to pickle python objects. It is optional to also install CuPy for some customized operations if needed:

    pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-<CUDA_VERSION>
    pip install dill
    pip install cupy  # optional, installation can be slow

    For example, on CUDA 11.1, DALI can be installed via:

    pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda110  # CUDA 11.1 compatible
    pip install dill
    pip install cupy  # optional, installation can be slow

Quick Demo

Train StyleGAN2 on FFHQ in Resolution of 256x256

In your Terminal, run:

./scripts/training_demos/stylegan2_ffhq256.sh <NUM_GPUS> <PATH_TO_DATA> [OPTIONS]

where

  • refers to the number of GPUs. Setting as 1 helps launch a training job on single-GPU platforms.

  • refers to the path of FFHQ dataset (in resolution of 256x256) with zip format. If running on local machines, a soft link of the data will be created under the data folder of the working directory to save disk space.

  • [OPTIONS] refers to any additional option to pass. Detailed instructions on available options can be shown via ./scripts/training_demos/stylegan2_ffhq256.sh --help .

This demo script uses stylegan2_ffhq256 as the default value of job_name, which is particularly used to identify experiments. Concretely, a directory with name job_name will be created under the root working directory (with is set as work_dirs/ by default). To prevent overwriting previous experiments, an exception will be raised to interrupt the training if the job_name directory has already existed. To change the job name, please use --job_name= option.

More Demos

Please find more training demos under ./scripts/training_demos/.

Inspect Training Results

Besides using TensorBoard to track the training process, the raw results (e.g., training losses and running time) are saved in JSON format. They can be easily inspected with the following script

import json

file_name = '
   
    /log.json'
   

data_entries = []
with open(file_name, 'r') as f:
    for line in f:
        data_entry = json.loads(line)
        data_entries.append(data_entry)

# An example of data entry
# {"Loss/D Fake": 0.4833524551040682, "Loss/D Real": 0.4966000154727226, "Loss/G": 1.1439273656869773, "Learning Rate/Discriminator": 0.002352941082790494, "Learning Rate/Generator": 0.0020000000949949026, "data time": 0.0036810599267482758, "iter time": 0.24490128830075264, "run time": 66108.140625}

Convert Pre-trained Models

See Model Conversion for details.

Prepare Datasets

See Dataset Preparation for details.

Develop

See Contributing Guide for details.

License

The project is under MIT License.

Acknowledgement

This repository originates from GenForce, with all modules carefully optimized to make it more flexible and robust for distributed training. On top of GenForce where only StyleGAN training is provided, this repository also supports training StyleGAN2 and StyleGAN3, both of which are fully reproduced. Any new method is welcome to merge into this repository! Please refer to the Develop section.

Contributors

The main contributors are listed as follows.

Member Contribution
Yujun Shen Refactor and optimize the entire codebase and reproduce start-of-the-art approaches.
Zhiyi Zhang Contribute to a number of sub-modules and functions, especially dataset related.
Dingdong Yang Contribute to DALI data loading acceleration.
Yinghao Xu Originally contribute to runner and loss functions in GenForce.
Ceyuan Yang Originally contribute to data loader in GenForce.
Jiapeng Zhu Originally contribute to evaluation metrics in GenForce.

BibTex

We open source this library to the community to facilitate the research. If you do like our work and use the codebase for your projects, please cite our work as follows.

@misc{hammer2022,
  title =        {Hammer: An Efficient Toolkit for Training Deep Models.},
  author =       {Shen, Yujun and Zhang, Zhiyi and Yang, Dingdong and Xu, Yinghao and Yang, Ceyuan and Zhu, Jiapeng},
  howpublished = {\url{https://github.com/bytedance/Hammer}},
  year =         {2022}
}
Owner
Bytedance Inc.
Bytedance Inc.
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
TAPEX: Table Pre-training via Learning a Neural SQL Executor

TAPEX: Table Pre-training via Learning a Neural SQL Executor The official repository which contains the code and pre-trained models for our paper TAPE

Microsoft 157 Dec 28, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022