Combinatorial model of ligand-receptor binding

Overview

Combinatorial model of ligand-receptor binding

The binding of ligands to receptors is the starting point for many import signal pathways within a cell, but in contrast to the specificity of the processes that follow such bindings, the bindings themselves are often non-specific. Namely, a single type of ligand can often bind to multiple receptors beyond the single receptor to which it binds optimally. This property of ligand-receptor binding naturally leads to a simple question:

If a collection of ligands can bind non-specifically to a collection of receptors, but each ligand type has a specific receptor to which it binds most strongly, under what thermal conditions will all ligands bind to their optimal sites?


Depiction of various ligand types binding optimally and sub-optimally to receptors

In this repository, we collect all the simulations that helped us explore this question in the associated paper. In particular, to provide a conceptual handle on the features of optimal and sub-optimal bindings of ligands, we considered an analogous model of colors binding to a grid.


Partially correct and completely correct binding for the image

In the same way ligands could have certain receptors to which they bind optimally (even though such ligands could bind to many others), each colored square has a certain correct location in the image grid but could exist anywhere on the grid. We have the correct locations form a simple image so that when simulating the system it is clear by eye whether the system has settled into its completely correct configuration. In all of the notebooks in this repository, we use this system of grid assembly as a toy model to outline the properties of our ligand-receptor binding model.

Reproducing figures and tables

Each notebook reproduces a figure in the paper.

Simulation Scheme

For these simulations, we needed to define a microstate, the probability of transitions between microstates, and the types of transitions between microstates.

Microstate Definition

A microstate of our system was defined by two lists: one representing the collection of unbound particles, and the other representing particles bound to their various binding sites. The particles themselves were denoted by unique strings and came in multiple copies according to the system parameters. For example, a system with R = 3 types of particles with n1 = 2, n2 = 3, and n3 = 1 could have a microstate defined by unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −] where “−” in the bound list stands for an empty binding site.

Since the number of optimally bound particles was an important observable for the system, we also needed to define the optimal binding configuration for the microstates. Such an optimal configuration was chosen at the start of the simulation and was defined as a microstate with no unbound particles and all the bound particles in a particular order. For example, using the previous example, we might define the optimal binding configuration as optimal_bound_config = [A1, A1, A2, A2, A2, A3], in which case the number of optimally bound particles of each type in bound_particles = [A1,−,A2,−,A1,−] is m1 = 1, m2 = 1, and m3 = 0. The number of bound particles of each type is k_1 = 2, k_2 = 1, and k_3 = 0. We note that the order of the elements in unbound_particles is not physically important, but, since the number of optimally bound particles is an important observable, the order of the elements in bound_particles is physically important.

For these simulations, the energy of a microstate with k[i] bound particles of type i and m[i] optimally bound particles of type i was defined as

E(k, m) = Sum^R_i (m[i] log delta[i] + k[i] log gamma[i])

where k=[k1,k2,...,,kR] and m=[m1,m2,...,mR], gamma[i] is the binding affinity, and delta[i] is the optimal binding affinity of particle of type i. For transitioning between microstates, we allowed for three different transition types: Particle binding to a site; particle unbinding from a site; permutation of two particles in two different binding sites. Particle binding and unbinding both occur in real physical systems, but permutation of particle positions is unphysical. This latter transition type was included to ensure an efficient-in-time sampling of the state space. (Note: For simulations of equilibrium systems it is valid to include physically unrealistic transition types as long as the associated transition probabilities obey detailed balance.)

Transition Probability

At each time step, we randomly selected one of the three transition types with (equal probability for each type), then randomly selected the final proposed microstate given the initial microstate, and finally computed the probability that said proposal was accepted. By the Metropolis Hastings algorithm, the probability that the transition is accepted is given by

prob(init → fin) = min{1, exp(- β(Efin −Einit))*π(fin → init)/π(init → fin) }

where Einit is the energy of the initial microstate state and Efin is the energy of the final microstate. The quantity π(init → fin) is the probability of randomly proposing the final microstate state given the initial microstate state and π(fin → init) is defined similarly. The ratio π(fin → init)/π(init → fin) varied for each transition type. Below we give examples of these transitions along with the value of this ratio in each case. In the following, Nf and Nb represent the number of free particles and the number of bound particles, respectively, before the transition.

Types of Transitions

  • Particle Binding to Site: One particle was randomly chosen from the unbound_particles list and placed in a randomly chosen empty site in the bound_particles list. π(fin → init)/π(init → fin) = Nf^2/(Nb +1).

Example: unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −]unbound_particles = [A2, A3] and bound_particles = [A1, A2, A2, −, A1, −]; π(fin → init)/π(init → fin) = 9/4

  • Particle Unbinding from Site: One particle was randomly chosen from the bound_particles list and placed in the unbound_particles list. π(fin → init)/π(init → fin) = Nb/(Nf + 1)^2.

Example: unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −]unbound_particles = [A2, A2, A3, A2] and bound_particles = [A1, −, −, −, A1, −]; π(fin → init)/π(init → fin) = 3/16

  • Particle Permutation: Two randomly selected particles in the bound_particles list switched positions. π(fin → init)/π(init → fin) = 1.

Example: unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −]unbound_particles = [A2, A2, A3] and bound_particles = [A2, −, A1, −, A1, −]; π(fin → init)/π(init → fin) = 1

For impossible transitions (e.g., particle binding when there are no free particles) the probability for accepting the transition was set to zero. At each temperature, the simulation was run for anywhere from 10,000 to 30,000 time steps (depending on convergence properties), of which the last 2.5% of steps were used to compute ensemble averages of ⟨k⟩ and ⟨m⟩. These simulations were repeated five times, and each point in Fig. 6b, Fig. 7b, Fig. 8b, and Fig. 9 in the paper represents the average ⟨k⟩ and ⟨m⟩ over these five runs.

References

[1] Mobolaji Williams. "Combinatorial model of ligand-receptor binding." 2022. [http://arxiv.org/abs/2201.09471]


@article{williams2022comb,
  title={Combinatorial model of ligand-receptor binding},
  author={Williams, Mobolaji},
  journal={arXiv preprint arXiv:2201.09471},
  year={2022}
}
Owner
Mobolaji Williams
Mobolaji Williams
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Pose Detection and Machine Learning for real-time body posture analysis during exercise to provide audiovisual feedback on improvement of form.

Posture: Pose Tracking and Machine Learning for prescribing corrective suggestions to improve posture and form while exercising. This repository conta

Pratham Mehta 10 Nov 11, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022