[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

Related tags

Deep Learningsmyrf
Overview

SMYRF: Efficient attention using asymmetric clustering

Get started:

Colab

Abstract

We propose a novel type of balanced clustering algorithm to approximate attention. Attention complexity is reduced from O(N^2) to O(NlogN), where N is the sequence length. Our algorithm, SMYRF, uses Locality Sensitive Hashing (LSH) in a novel way by defining new Asymmetric transformations and an adaptive scheme that produces balanced clusters. The biggest advantage of SMYRF is that it can be used as a drop-in replacement for dense attention layers without any retraining. On the contrary, prior fast attention methods impose constraints (e.g. tight queries and keys) and require re-training from scratch. We apply our method to pre-trained state-of-the-art Natural Language Processing and Computer Vision models and we report significant memory and speed benefits. Notably, SMYRF-BERT outperforms (slightly) BERT on GLUE, while using $50%$ less memory. We also show that SMYRF can be used interchangeably with dense attention before and after training. Finally, we use SMYRF to train GANs with attention in high resolutions. Using a single TPU, we train BigGAN on Celeba-HQ, with attention at resolution 128x128 and 256x256, capable of generating realistic human faces.

Authors: Giannis Daras, Nikita Kitaev, Augustus Odena, Alexandros G. Dimakis

Results

Memory-quality trade-off

GLUE benchmark

Avg. # C CoLA MNLI-m/mm MRPC QNLI QQP RTE SST-2 STS-B
BERT128 82.69 1 1 57.83 84.43/84.68 88.41 91.31 89.70 65.70 93.46 88.73
SMYRF-BERT2x32 82.98 2 32 58.79 83.76/84.27 87.69 91.14 89.72 68.59 93.23 89.65
SMYRF-BERT2x16 81.74 2 16 58.90 82.86/83.49 85.72 89.53 89.33 64.98 93.12 87.75
BERT64 81.57 1 64 58.80 82.34/82.47 87.02 90.48 89.69 61.73 93.00 88.64
BERT32 73.56 1 32 56.40 64.51/63.41 77.89 79.81 88.59 55.23 92.66 83.53

Interchangeability of SMYRF and dense attention

Results on IMDB dataset. Using dense attention on inference consistently improves results, nearly matching dense attention perf.

Memory SMYRF Inference Accuracy
RoBERTa 100% 94.96%
SMYRF-RoBERTa 50% 93.72%
SMYRF-RoBERTa 50% 94.62%
BERT 100% 94.12%
SMYRF-BERT 50% 92.64%
SMYRF-BERT 50% 93.54%

Smyrf-BigGAN training on Celeba-HQ-128

Generated faces by a Smyrf-BigGAN trained on 128x128 resolution with attention at 128x128, using 50% of dense memory.

Results after 120k iterations:

Resolution Attention # C FID
BigGAN 128x128 64x64 1 4096 26.06
Smyrf-BigGAN 128x128 128x128 4 2048 25.03

where # denotes number of hashes and C number of queries per cluster.

What's here

The code hosted in this repository is the one we used to run all the experiments in the paper. Get started:

Colab

For a deeper dive, look at the examples/ folder where we have code for pre-training SMYRF-BigGAN, sampling from a pre-trained BigGAN with SMYRF, finetuning state-of-the-art NLP models with SMYRF and a lot more.

Acknowledgments

We would like to wholeheartedly thank the TensorFlow Research Cloud (TFRC) program that gave us access to Cloud TPUs and GCP credits to train our models.

The code for the NLP experiments is exclusively based on the HuggingFace transformers library. We are very grateful to the authors of the library for their work.

The code for the CV experiments is based on the PyTorch implementation of BigGAN available in this url. The code has been expanded to support training on TPUs. Again, we want to thank the author for open-sourcing this implementation.

You might also like...
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Code for Discriminative Sounding Objects Localization (NeurIPS 2020)
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Defending graph neural networks against adversarial attacks (NeurIPS 2020)
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ([email protected]), Marinka Zitnik ([email protected].

Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

Discovering Interpretable GAN Controls [NeurIPS 2020]
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Comments
  • Auto-regressive

    Auto-regressive

    Hi Giannis!

    Thanks for the great paper! I am interested in your asymmetric LSH, as I think having separate query / key space (as opposed to shared QK as in Reformer) will bring performance improvements in LSH-based attention.

    I saw that you recommended to a previous user to use this form of clustering for the auto-regressive case, and just wanted to probe if you had considered the scenario where a bucket of queries do not get matched with any keys from the past at all. This was an issue I had with trying to make separate QK space work with routing transformer, but just wondering if you had identified and found a solution to this problem.

    Phil

    opened by lucidrains 2
  • Logging and scoring

    Logging and scoring

    Currently logging and scoring is disabled for TPU BigGAN for maximum efficiency. We can probably re-write the logger and scorer to lower their performance bottleneck by converting most cpu materializations to XLA ops.

    bug example 
    opened by giannisdaras 0
  • Ema not working on TPU

    Ema not working on TPU

    Exponential moving average on weights of G is not working on TPUs. The problem is related to the loading of the state dict: https://github.com/ajbrock/BigGAN-PyTorch/blob/master/utils.py#L614

    For now, we disable ema.

    bug example 
    opened by giannisdaras 0
Releases(1.0)
Owner
Giannis Daras
Machine Learning Researcher. Ph.D. student, UT Austin.
Giannis Daras
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022