Exporter for Storage Area Network (SAN)

Overview

SAN Exporter

license CI Docker Pulls Code size

Prometheus exporter for Storage Area Network (SAN).

We all know that each SAN Storage vendor has their own glossary of terms, health/performance metrics and monitoring tool.

But from operator view,

  • We normally focus on some main metrics which are similar on different storage platform.
  • We are not only monitoring SAN storage but also other devices and services at multi-layer (application, virtual Machine, hypervisor, operating system and physical).

That's why we build this to have an unified monitoring/alerting solution with Prometheus and Alermanager.

Architecture overview

SAN exporter architecture

Features

There are some main features you might want to know, for others, please see example configuration.

  • Enable/disable optinal metrics for each backend
  • Enable/disable backend
  • Backend will automatically stop collecting data from SAN system after timeout seconds from last request of client. With this feature, we can deploy two instances as Active/Passive mode for high availability.

Note: Backend may not respond metrics in the first interval while collecting, calculating and caching metrics.

Quick start

  • Start a dummy driver with Docker
$ git clone [email protected]:vCloud-DFTBA/san_exporter.git
$ cd san_exporter/
$ cp examples/dummy_config.yml config.yml
# docker run --rm -p 8888:8888 -v $(pwd)/config.yml:/san-exporter/config.yml --name san-exporter daikk115/san-exporter:0.1.0

See the result at http://localhost:8888/dummy_backend

  • Start a dummy driver manually
$ git clone [email protected]:vCloud-DFTBA/san_exporter.git
$ cd san_exporter/
$ cp examples/dummy_config.yml config.yml
$ sudo apt-get install libxml2-dev libxslt1-dev python3.7-dev
$ pip3 install -r requirements.txt
$ python3.7 manage.py

See the result at http://localhost:8888/dummy_backend

Deployment

Create configuration file

# mkdir /root/san-exporter
# cp /path/to/san_exporter/examples/config.yml.sample /root/san-exporter/config.yml

Update /root/san-exporter/config.yml for corresponding to SAN storage

Run new container

# docker volume create san-exporter
# docker run -d -p 8888:8888 -v san-exporter:/var/log/ -v /root/san-exporter/config.yml:/san-exporter/config.yml --name san-exporter daikk115/san-exporter:latest

Supported Drivers

  • Matrix of driver's generic metrics
Capacity all Capacity pool IOPS/Throuhgput pool Latency pool IOPS/Throughput node Latency node CPU node RAM node IOPS/Throughput LUN Latency LUN IOPS/Throughput disk Latency disk IOPS/Throughput port Latency port Alert
HPMSA X X X X X X X X
DellUnity X X X X X X X X X X
HitachiG700 X X X
HPE3Par X X X X X X X X
NetApp X X X X X X
SC8000 X X X X X X X X X X X
V7k X X X X X X
  • Connection port requirements
    • For some SAN system, we collect metrics over SP API but some others, we collect metrics dirrectly from controller API.
    • In some special cases, we collect alerts over SSH.
SAN System Service Processor Connection Port
HPMSA NO 443
Dell Unity NO 443
Hitachi G700 YES 23451
IBM V7000 NO #TODO
IBM V5000 NO #TODO
HPE 3PAR YES #TODO
NetApp ONTAP NO 443
SC8000 NO 3033

Metrics

All metrics are prefixed with "san_" and has at least 2 labels: backend_name and san_ip

Info metrics:

Metrics name Type Help
san_storage_info gauge Basic information: serial, version, ...

Controller metrics:

Metrics name Type Help
san_totalNodes gauge Total nodes
san_masterNodes gauge Master nodes
san_onlineNodes gauge Online nodes
san_compress_support gauge Compress support, 1 = Yes, 0 = No
san_thin_provision_support gauge Thin provision support, 1 = Yes, 0 = No
san_system_reporter_support gauge System reporter support, 1 = Yes, 0 = No
san_qos_support gauge QoS support, 1 = Yes, 0 = No
san_totalCapacityMiB gauge Total system capacity in MiB
san_allocatedCapacityMiB gauge Total allocated capacity in MiB
san_freeCapacityMiB gauge Total free capacity in MiB
san_cpu_system_utilization gauge The average percentage of time that the processors on nodes are busy doing system I/O tasks
san_cpu_compression_utilization gauge The approximate percentage of time that the processor core was busy with data compression tasks
san_cpu_total gauge The cpus spent in each mode

Pool metrics:

Metrics name Type Help
san_pool_totalLUNs gauge Total LUNs (or Volumes)
san_pool_total_capacity_mib gauge Total capacity of pool in MiB
san_pool_free_capacity_mib gauge Free of pool in MiB
san_pool_provisioned_capacity_mib gauge Provisioned of pool in MiB
san_pool_number_read_io gauge Read I/O Rate - ops/s
san_pool_number_write_io gauge Write I/O Rate - ops/s
san_pool_read_cache_hit gauge Read Cache Hits - %
san_pool_write_cache_hit gauge Write Cache Hits - %
san_pool_read_kb gauge gauge Read Data Rate - KiB/s
san_pool_write_kb gauge Write Data Rate - KiB/s
san_pool_read_service_time_ms gauge Read Response Time - ms/op
san_pool_write_service_time_ms gauge Write Response Time - ms/op
san_pool_read_IOSize_kb gauge Read Transfer Size - KiB/op
san_pool_write_IOSize_kb gauge Write Transfer Size - KiB/op
san_pool_queue_length gauge Queue length of pool

Port metrics:

Metrics name Type Help
san_port_number_read_io gauge Port Read I/O Rate - ops/s
san_port_number_write_io gauge Port Write I/O Rate - ops/s
san_port_write_kb gauge Port Write Data Rate - KiB/s
san_port_read_kb gauge Port Read Data Rate - KiB/s
san_port_write_IOSize_kb gauge Port Write Transfer Size - KiB/op
san_port_read_IOSize_kb gauge Port Read Transfer Size - KiB/op
san_port_queue_length gauge Queue length of port

For more information about specific metrics of SANs, see Specific SAN Metrics

Integrate with Prometheus, Alertmanager and Grafana

Some grafana images:

SAN exporter dashboard overview

SAN exporter dashboard pool

SAN exporter dashboard port

You might also like...
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

Visualizer for neural network, deep learning, and machine learning models
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

End-to-End Object Detection with Fully Convolutional Network
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

TensorFlow-based neural network library
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

Comments
  • Support purestorage please!

    Support purestorage please!

    Is your feature request related to a problem? Please describe. A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]

    Describe the solution you'd like A clear and concise description of what you want to happen.

    Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.

    Additional context Add any other context or screenshots about the feature request here. Can you support purestorage?

    opened by wanbeepeto 0
Releases(v0.8.0)
  • v0.8.0(Aug 17, 2021)

    • Release notes:
      • Add Dell Unnity driver
      • Add Hitachi G700 driver
      • Add HPE 3PAR driver
      • Add HPMSA driver
      • Add NetApp ONTAP driver
      • Add Dell SC800 driver
      • Add IBM V7000 driver
    • Docker image: daikk115/san-exporter:0.8.0
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Aug 15, 2021)

Owner
vCloud
Not Only vCloud - Don’t Forget To Be Awesome
vCloud
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022